
- •1.1 Понятие научного знания
- •1.2 Методы теоретических и эмпирических исследований
- •2 Выбор направления научного исследования и этапы научно-исследовательской работы
- •2.1 Этапы научно-исследовательской работы
- •3.2 Объекты промышленной собственности
- •3.3 Поиск информации в Интернете
- •3.4 Организация работы с научной литературой
- •4.2 Использование математических методов в исследованиях
- •4.3Аналитические методы
- •4.4 Подобие и моделирование в научных исследованиях
- •4.5 Классификация, типы и задачи эксперимента
- •5 Измерения. Основные понятия и определения
- •5.1 Типы шкал
- •5.3 Способы измерений
- •5.4 Методы измерений
- •5.5 Классификация погрешностей
- •5.6 Принципы описания и оценивания погрешностей
- •5.7 Систематические погрешности
- •5.8 Компенсация систематической погрешности
- •5.9 Основные понятия теории вероятности и математической статистики
- •Дисперсию, размах ряда распределения.
- •Определение минимального количества измерений
- •Исключение грубых ошибок при измерениях
- •Установление оптимальных условий измерения
- •Методы графической обработки результатов измерений
5.5 Классификация погрешностей
Погрешность результата каждого конкретного измерения складывается из многих составляющих, обязанных своим происхождением различным факторам и источникам. Традиционный аналитический подход к оцениванию погрешностей результата состоит в выделении этих составляющих, изучении их по отдельности и последующем суммировании. Зная свойства и оценив количественные характеристики составляющих погрешностей, можно правильно учесть их при оценивании погрешности результата или, если это возможно, ввести поправки в результат измерения. Выделив и оценив отдельные составляющие погрешности, иногда оказывается возможным так организовать измерение, чтобы эти составляющие не оказали влияния на результат. Естественно, что классифицировать составляющие погрешности можно по многим признакам. В целях единообразия подхода к анализу и оцениванию погрешностей в метрологии принята следующая классификация.
По характеру проявления во времени выделяют систематические и случайные составляющие погрешности (далее, для краткости, будем опускать слово составляющие там, где в этом нет необходимости).
Систематической погрешностью измерения называется погрешность, которая при повторных измерениях одной и той же величины в одних и тех же условиях остается постоянной или закономерно изменяется.
Случайной погрешностью измерения называют погрешность, которая при повторных измерениях одной и той же величины в одних и тех же условиях изменяется случайным образом по знаку и (или) величине. Источником систематической погрешности может послужить, например, неточное нанесение отметок на шкалу стрелочною прибора, деформация стрелки. Случайная составляющая погрешности возможна из-за трения в опорах подвижной части прибора, колебаний температуры окружающего воздуха, влияния магнитных и электрических промышленных помех и т.п.
Обязательными компонентами любого измерения являются средство измерения, метод измерения и человек, проводящий измерение Несовершенство каждого из этих компонентов приводит к появлению своей составляющей погрешности результата. В соответствии с этим, по источнику возникновения различают инструментальные, методические и личные погрешности.
Пример.
На рисунке приведен вариант измерения
сопротивления резистора методом
вольтметра-амперметра. Для нахождения
сопротивления R
резистора необходимо измерить ток I
протекающий через резистор и падение
напряжения UR
на резисторе. В приведенном варианте
схемы, реализующей принятый метод,
падение напряжения измеряется вольтметром,
тогда как амперметр измеряет суммарный
ток, протекающий через резиcтop
и через вольтметр. В результате, измеренное
значение сопротивления будет не истинным
и будет содержать методическую
ошибку.
Каждому из приборов, использованных
при измерении, присущи определенные
погрешности, причем в общей погрешности
прибора может присутствовать и
систематическая, и случайная составляющие.
Очевидно, что эти составляющие окажут
свое влияние на результат измерения, и
их следует классифицировать как
инструментальные.
И, наконец, из-за отсутствия правильных
навыков работы с приборами экспериментатор
может внести в результат измерения
личную
составляющую
погрешности из-за неточности отсчета
доли деления по шкале, неточности отсчета
из-за параллакса, невнимательности и
др.
По условиям возникновения у средств измерения различают основную и дополнительную погрешности. Каждое средство измерений предназначено для работы в определенных условиях, указываемых в нормативно-технической документации. При этом отдельно указывают нормальные условия применения средств измерения, т.е. условия, при которых величины, влияющие на погрешности данного средства измерения, находятся в пределах нормальной области значений и рабочие условия применения — условия работы, при которых значения влияющих величин выходят за пределы нормальных, но находятся в пределах рабочих областей. Погрешность средства измерения, определенная при нормальных условиях, называется основной. Погрешность, обусловленную выходом значений влияющих величин за пределы нормальных значений, называют дополнительной.
Пример. Амперметр предназначен для измерения переменного тока с номинальной частотой (50±5) Гц Отклонение частоты за эти пределы приведет к дополнительной погрешности измерения.
Для оценивания дополнительных погрешностей в документации на средство измерений обычно указывают нормы изменения показаний при выходе условий измерения за пределы нормальных.
Выше мы определили статический и динамический режимы работы средства измерения. Соответственно, выделяют статические и динамические составляющие погрешности. Динамическая составляющая погрешности возникает при работе средства измерения в динамическом режиме и определяется двумя факторами: динамическими (инерционными) свойствами средства измерений и характером (скоростью) изменения измеряемой величины. При измерениях детерминированных сигналов динамические погрешности обычно рассматриваются как систематические. При случайном характере измеряемой величины динамические погрешности приходится рассматривать как случайные.
Стандартизованной является оценка качества измерения с указанием погрешности. При этом предпочтение отдается выражению погрешности измерения в форме относительной погрешности, как наиболее информативной, дающей возможность объективно сопоставлять результаты и оценивать качество измерений, выполненных в разное время или разными экспериментаторами. В самом деле, измерив длину стержня l= 1000 мм с погрешностью 10 мм (т.е. с относительной погрешностью 0,01 или 1%) и расстояние между двумя станциями метро l2 — 1 км с такой же абсолютной погрешностью 10мм (т.е. с относительной погрешностью 1-10-5 или 10-3 %), мы делаем заключение, что хотя абсолютная погрешность измерения в обоих случаях одинакова, первое измерение является достаточно грубым, а второе выполнено с высокой точностью.
Будучи важнейшей характеристикой результата измерения, определяющей степень доверия к нему, погрешность должна быть обязательно оценена. Для разных видов измерений задача оценивания погрешности может решаться по-своему, погрешность результата измерения может оцениваться с разной точностью, на основании разной исходной информации. В соответствии с этим различают измерения с «точным» (в смысле, с наивысшей достижимой точностью), приближенным и предварительным оцениванием погрешностей.
При измерениях с «точным» оцениванием погрешности учитываются индивидуальные метрологические свойства и характеристики каждого из примененных средств измерения, анализируется метод измерений, контролируются условия измерений с целью учета их влияния на результат измерения.
При измерениях с приближенным оцениванием погрешностей учитывают лишь нормативные, типовые метрологические характеристики средств измерения и оценивают влияние на результат измерения лишь отклонений условий измерения от нормальных.
Измерения с предварительным оцениванием погрешностей выполняются по типовым методикам выполнения измерений, регламентированным нормативно-технической документацией, в которых указываются методы и условия измерений, типы и погрешности используемых средств измерений и, на основе этих данных, заранее оценена и указана в методике возможная погрешность результата.
В инженерной практике обычно имеют дело с двумя последними видами измерений и приемами оценивания погрешностей результата измерения, относящимся к категории — технические измерения.
При использовании средств измерений часто можно выделить составляющие погрешности, не зависящие от значения измеряемой величины (аддитивные) и погрешности, изменяющиеся пропорционально измеряемой величине (мультипликативные). Такие составляющие называют, соответственно, аддитивными и мультипликативными погрешностями. Аддитивной, например, является систематическая погрешность, вызванная неточной установкой нуля у стрелочного прибора с равномерной шкалой; мультипликативной — погрешность измерения отрезков времени отстающими или спешащими часами. Эта погрешность будет возрастать по абсолютной величине до тех пор, пока владелец часов не выставит их правильно по сигналам точного времени