Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция гидравлика.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
883.2 Кб
Скачать

7.4. Принцип действия и схемы газотурбинных установок

Существенным недостатком ДВС является возвратно-поступательное движение поршня и наличие больших инерционных усилий, что не позволяет создавать поршневые двигатели больших мощностей с малыми размерами и весом. В газотурбинной установке (рис. 7.13), как и в ДВС рабочим телом являются продукты сгорания жидкого или газообразного топлива, но возвратно-поступательный принцип заменен вращательным движением рабочего колеса турбины под действием струи газа. Кроме этого, в турбинах осуществимо полное адиабатное расширение продуктов сгорания до давления наружного воздуха, с чем связан дополнительный выигрыш работы.

Как видно из схемы, воздух окружающей среды засасывается нагнетателем 2 через подогреватель воздуха 8. В нагнетателе воздух сжимается адиабатно до требуемого давления и подаётся в камеру сгорания 5.

В неё же топливным насосом 6 из топливного бака 7 подаётся топливо. В камере сгорания в результате воспламенения топлива образуются продукты сгорания, температура которых регулируется количеством подаваемого воздуха. Воздух подаётся с большим избытком, чтобы обеспечить приемлемую температуру горения топлива. Продукты сгорания поступают в сопла газовой турбины 1, где их потенциальная энергия в процессе адиабатного расширения преобразуется в кинетическую. Истекающие из сопел струи попадают на лопатки турбины и их кинетическая энергия расходуется на вращение вала установки и передаётся электрическому генератору 3 и нагнетателю 2. Отходящие из турбины газы направляются в подогреватель воздуха 8, где отдают своё тепло воздуху, засасываемому нагнетателем 2.

Д ля пуска установки используют пусковой электродвигатель 4.

Рис. 7.13. Схема газотурбинной установки

С целью обеспечения работы компрессора и турбины на внешнюю нагрузку в наивыгоднейших режимах с высоким КПД применяют двухвальные схемы турбоустановок. В одних схемах компрессор приводится в движение турбиной высокого давления, находящейся с ним на одном валу, а в других – турбиной низкого давления. Тогда главная турбина, работающая на другом валу на внешнюю нагрузку, в первом случае будет состоять из ступеней низкого давления, а во втором – из ступеней высокого давления. Выбор частоты вращения ротора главной турбины определяется нагрузкой, частота же вращения компрессорного агрегата может изменяться в широких пределах, обеспечивая изменение расхода воздуха в соответствии с потребностью.

7.5. Циклы гту с изобарным и изохорным подводом теплоты

В качестве простейших циклов газотурбинных установок (ГТУ) приняты: цикл с изобарным подводом теплоты и цикл с изохорным подводом теплоты. Эти циклы отличаются от соответствующих циклов ДВС процессом отвода теплоты — изохорный процесс отвода заменен изобарным. Современные ГТУ в основном работают с изобарным подводом теплоты.

Теоретический цикл ГТУ с изобарным подводом теплоты (рис. 7.14) состоит из процесса адиабатного сжатия воздуха 12 в компрессоре, процесса изобарного подвода теплоты 2—3 в камере сгорания и процесса адиабатного расширения 3—4 продуктов сгорания в соплах газовой турбины. После преобразования кинетической энергии струи газа на рабочих лопатках и процесса отвода теплоты 4—1 от газа в окружающую среду при постоянном давлении цикл завершается.

Рис. 7.14. Цикл ГТУ с изобарным подводом теплоты

Полезная работа в цикле равна разности между технической работой турбины и технической работой, затраченной на привод компрессора.

Цикл газовой турбины с изобарным подводом теплоты характеризуется степенью повышения давления в цикле

.

Можно показать, что .

То есть термический КПД цикла ГТУ с подводом тепла при увеличивается с увеличением степени повышения давления.

Теоретический цикл ГТУ с изохорным подводом теплоты (рис. 7.15) состоит из процесса адиабатного сжатия воздуха 12 в компрессоре, процесса изохорного подвода теплоты 2—3 в камере сгорания и процесса адиабатного расширения 3—4 продуктов сгорания в соплах газовой турбины. После преобразования кинетической энергии струи

газа на рабочих лопатках и процесса отвода теплоты 4—1 от газа в окружающую среду при постоянном давлении цикл завершается.

Рис. 7.15. Цикл ГТУ с изохорным подводом теплоты

Цикл газовой турбины с изохорным подводом теплоты характеризуется степенью повышения давления при сжатии

и степенью повышения давления при подводе теплоты .

Можно показать, что .

Исследование последнего выражения показывает, что термический КПД ГТУ с изохорным подводом теплоты возрастает с увеличением b и l.

Цикл ГТУ с подводом теплоты при не получил широкого распространения из-за сложности конструкции камеры сгорания и ухудшения условий работы турбины в пульсирующем потоке продуктов сгорания.

20

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]