
- •Индивидуальное задание по теории вероятностей. Вариант № 1.
- •6). Случайная дискретная величина х задана законом распределения:
- •Индивидуальное задание по теории вероятностей. Вариант № 2.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 3.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 4.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 6.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 9.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 10.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 12.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 14.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 15.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 17.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 18.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 20.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 21.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 23.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 24.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 25.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 26.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 29.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Контрольные вопросы.
- •Литература.
Индивидуальное задание по теории вероятностей. Вариант № 9.
1). Три электрические лампочки включены в цепь последовательно. Вероятность, что лампочка перегорит, равна 0.6. Найти вероятность, что в цепи не будет тока.
2). На пяти карточках написаны цифры: 1,2,3,4,5. Две из них вынимают наугад и укладываются на стол в порядке появления. Найти вероятность того, что число на второй карточке будет больше.
3). На заводе три машины, изготавливающие детали. Первая производит 30%, вторая- 25%, третья- 45% всех деталей. В их продукции брак составляет соответственно 6%, 4%, и 3%. Какова вероятность, что случайно выбранная деталь окажется годной.
4). Известно, что соответствует требуемому стандарту 98% электроламп, изготовленных заводом № 1, 96%-заводом № 2, 99%-заводом № 3 и 95%-заводом № 4. В магазин поступило 200 электроламп, изготовленных заводом № 1, 80- заводом № 2, 70-заводом № 3 и 50-заводом № 4. Здесь они оказались перемешанными. Наудачу выбранная лампа не удовлетворяет стандарту. Найти вероятность того, что приобретённая лампа в магазине изготовлена заводом № 3.
5). Вероятность попадания в цель при каждом выстреле из орудия равна 0.8. Сколько нужно произвести выстрелов, чтобы наивероятнейшее число попаданий и вероятность этого числа попаданий.
6). Случайная дискретная величина х задана законом распределения:
Х |
15 |
25 |
38 |
43 |
54 |
55 |
46 |
67 |
78 |
89 |
Р |
0,25 |
0,15 |
0,02 |
0,14 |
0,12 |
0,15 |
0,04 |
0,06 |
0,05 |
0,02 |
Требуется:
а) найти выражение и построить график
интегральной функции распределения
случайной величины Х; б) найти математическое
ожидание случайной величины
;
в) найти дисперсию среднее квадратическое
отклонение случайной величины (Х-50).
7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
Требуется: а) найти дифференциальную функцию распределения вероятностей; б) построить графики f(x) и F(x); в) найти вероятность того, что случайная величина Х принимает значение из интервала (2;7); г) найти числовые характеристики случайной величины (5Х-4).
8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
Требуется: а) найти интегральную функцию распределения вероятностей; б) построить графики f(x) и F(x); в) найти вероятность того, что случайная величина Х принимает значение из интервала (-1;1); г) найти числовые характеристики случайной величины Х.
9).
Случайная непрерывная величина Х
распределена по нормальному закону с
параметрами
и
.
Записать дифференциальную и интегральную
функции распределения вероятностей и
найти числовые характеристики случайной
величины Х.
Индивидуальное задание по теории вероятностей. Вариант № 10.
1). В лабораторию доставлены 15 рыб, из которых 6 сеголетков. Наугад берутся 3 рыбы.
Найти вероятности следующих событий: хотя бы одна из рыб будет сеголетком; только одна из
рыб - сеголеток; не менее двух взятых рыб - сеголетки.
2). Среди 25 деталей, подвергаемых проверке, имеется всего 15 точных. Какова вероятность того, что из числа взятых наудачу 10 деталей 8 точных?
3). В цехе работают 20 станков. Из них марки А-10 штук, марки В-6 штук и марки С-4 штуки. Вероятность того, что качество деталей окажется отличным для станков соответственно, равны 0.9, 0.8 и 0.7. Какой процент отличных деталей цех выпускает в целом.
4). Компания по страхования автомобилей делит водителей на три класса: класс А (кто мало рискует), класс В (рискует умеренно) и класс С (рискует сильно). Известно, что 25% всех водителей относится к классу А, 55%- к классу В, остальные 20%- к С. вероятность попасть в течение года хотя бы в одну аварию для водителей класса А равна 0.01, для В-0.03, а для С-0.1. Авария произошла. Найти вероятность того, что в аварию попал водитель класса А.
5). Всхожесть семян данного сорта оценивается с вероятностью, равной 0.8. Какова вероятность того, что из пяти посеянных семян взойдут не менее четырёх.