
- •Индивидуальное задание по теории вероятностей. Вариант № 1.
- •6). Случайная дискретная величина х задана законом распределения:
- •Индивидуальное задание по теории вероятностей. Вариант № 2.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 3.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 4.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 6.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 9.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 10.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 12.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 14.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 15.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 17.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 18.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 20.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 21.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 23.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 24.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 25.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 26.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 29.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Контрольные вопросы.
- •Литература.
8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
Требуется: а) найти интегральную функцию распределения вероятностей; б) построить графики f(x) и F(x); в) найти вероятность того, что случайная величина Х принимает значение из интервала (-2;4); г) найти числовые характеристики случайной величины Х.
9).
Случайная непрерывная величина Х
распределена по показательному закону
с параметром
.
Записать дифференциальную и интегральную
функции распределения вероятностей и
найти числовые характеристики случайной
величины Х.
Индивидуальное задание по теории вероятностей.
ВАРИАНТ № 30.
1) Среди 25 экзаменационных билетов 5 лёгких. Два студента по очереди берут по билету. Какова вероятность того, что студентам достанется не больше одного лёгкого билета?
2). 30% изделий данного предприятия – это продукция высшего сорта. Некто приобрёл 6 изделий, изготовленных на этом предприятии. Чему равна вероятность, что четыре из них высшего сорта?
3). Из 18 стрелков 5 попадают в мишень с вероятностью 0.8; 7-свероятностью0.7; 4- с вероятностью 0.6 и 2- с вероятностью 0.5. Найти вероятность того, что наудачу выбранный студент не поразит мишень.
4). Из 30 кинескопов, имеющихся в телевизионном ателье, 7 штук произведены заводам № 1, 15 – заводом № 2, восемь – заводом № 3. Вероятность того, что кинескоп изготовленный заводом № 1, в течение гарантийного срока не выйдет из строя, равна 0.95. Для кинескопа завода № 2 такая вероятность равна 0.9, а для завода № 3 – 0.8. Выбранный наудачу кинескоп выдержал гарантийный срок. Найти вероятность того, что это был кинескоп, изготовленный заводом № 3.
5). Вероятность выклева стерляди из икры в искусственных условиях, равна 0.7. Сколько
икринок стерляди нужно взять на контроль, чтобы с надёжностью 0,95 можно было ожидать, что отклонение относительной частоты от вероятности выклева не превзойдёт 0,05?
6). Случайная дискретная величина х задана законом распределения:
Х |
3,9 |
4,4 |
4,5 |
4,8 |
5,2 |
5,5 |
6,2 |
6,5 |
7,0 |
7,7 |
Р |
0,301 |
0,142 |
0,025 |
0,135 |
0,122 |
0,115 |
0,025 |
0,045 |
0,045 |
0,045 |
Требуется:
а) найти выражение и построить график
интегральной функции распределения
случайной величины Х; б) найти математическое
ожидание случайной величины
;
в) найти дисперсию среднее квадратическое
отклонение случайной величины (Х-5,5).
7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
Требуется: а) найти дифференциальную функцию распределения вероятностей; б) построить графики f(x) и F(x); в) найти вероятность того, что случайная величина Х принимает значение из интервала (1,5;4,5); г) найти числовые характеристики случайной величины Х.
8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
Требуется: а) найти интегральную функцию распределения вероятностей; б) построить графики f(x) и F(x); в) найти вероятность того, что случайная величина Х принимает значение из интервала (-1;2); г) найти числовые характеристики случайной величины Х.
9).
Случайная непрерывная величина Х
распределена по нормальному закону с
параметрами
и
.
Записать дифференциальную и интегральную
функции распределения вероятностей и
найти числовые характеристики случайной
величины Х.