
- •Индивидуальное задание по теории вероятностей. Вариант № 1.
- •6). Случайная дискретная величина х задана законом распределения:
- •Индивидуальное задание по теории вероятностей. Вариант № 2.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 3.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 4.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 6.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 9.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 10.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 12.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 14.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 15.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 17.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 18.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 20.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 21.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 23.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 24.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 25.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 26.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 29.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Контрольные вопросы.
- •Литература.
Индивидуальное задание по теории вероятностей. Вариант № 26.
1). Три стрелка стреляют в одну мишень независимо друг от друга. Вероятность попадания в цель первым стрелком равна 0.6, вторым 0.7, третьим 0.75. Найти вероятность, по крайней мере, попадания в цель, если каждый стрелок сделает по одному выстрелу.
2). Имеются пять билетов стоимостью по одному рублю, три билета по три рубля и два билета по пять рублей. Наугад берутся три билета. Определить вероятность того, что: а) хотя ба два из этих билетов имеют одинаковую стоимость; б) все три билета стоят семь рублей.
3). Пассажир может обратиться за получением билета в одну из трёх касс. Вероятность того, что к моменту прихода в кассе не будет билета соответственно, равны 0.3, 0.6 и 0.4. Найти вероятность того, что пассажир купит билет.
4). На складе готовой продукции находится пряжа, изготовленная двумя цехами фабрики, причём 30% пряжи составляет продукция второго цеха, а остальная – первого. Продукция первого цеха содержит 80%, а второго-75% пряжи первого сорта. Наудачу взятый моток пряжи оказался с браком. Найти вероятность того, что это моток пряжи изготовлен первым цехом.
5). Вероятность того, что самка осетра отдаёт икру в искусственных условиях, равна 0,65.
Какого отклонения относительной частоты отдачи икры от вероятности можно ожидать с
надёжностью 0,92, если в нерестовиках находятся 250 рыб?
6). Случайная дискретная величина х задана законом распределения:
Х |
4,3 |
4,5 |
4,8 |
5,5 |
5,7 |
6,8 |
7,9 |
8,0 |
8,1 |
8,4 |
Р |
0,30 |
0,14 |
0,02 |
0,13 |
0,12 |
0,13 |
0,03 |
0,04 |
0,05 |
0,04 |
Требуется:
а) найти выражение и построить график
интегральной функции распределения
случайной величины Х; б) найти математическое
ожидание случайной величины
;
в) найти дисперсию среднее квадратическое
отклонение случайной величины (Х-5,5).
7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
Требуется: а) найти дифференциальную функцию распределения вероятностей; б) построить графики f(x) и F(x); в) найти вероятность того, что случайная величина Х принимает значение из интервала (1,5;2,5); г) найти числовые характеристики случайной величины Х.
8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
Требуется: а) найти интегральную функцию распределения вероятностей; б) построить графики f(x) и F(x); в) найти вероятность того, что случайная величина Х принимает значение из интервала (-1;2); г) найти числовые характеристики случайной величины Х.
9).
Случайная непрерывная величина Х
распределена по показательному закону
с параметром
.
Записать дифференциальную и интегральную
функции распределения вероятностей и
найти числовые характеристики случайной
величины Х.
Индивидуальное задание по теории вероятностей.
ВАРИАНТ № 27.
1). В ящике 10 деталей, из которых четыре окрашены. Сборщик взял три детали. Найти вероятность того, что хотя бы одна из взятых деталей окрашена.
2). В круг радиуса R вписан квадрат. Чему равна вероятность того, что поставленные наудачу внутри круга две точки окажутся внутри квадрата?
3). В группе из 10 студентов, пришедших на экзамен, три подготовлены отлично, четыре - хорошо, два – посредственно и один – плохо. Отлично подготовленный студент может ответить на все 20 вопросов, хорошо подготовленный студент только на 16, удовлетворительно подготовленный студент только на 10 и плохо подготовленный студент – на 5. Найти вероятность того, что выбранный наудачу студент ответит на два вопроса.
4). Литьё в болванках для дальнейшей обработки поступает из двух цехов. 60% из первого цеха и 40% из второго. При этом материал первого цеха имеет 12% брака, а материал второго цеха 20%. Наудачу взятая болванка оказалась с браком. Найти вероятность того, что это болванка из первого цеха.
5). Вероятность того, что не прошла проверку ОТК, равна 0.2. Найти вероятность того, что среди 400 случайно отобранных деталей окажется непроверенных от 70 до 100 деталей.