- •Индивидуальное задание по теории вероятностей. Вариант № 1.
- •6). Случайная дискретная величина х задана законом распределения:
- •Индивидуальное задание по теории вероятностей. Вариант № 2.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 3.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 4.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 6.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 9.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 10.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 12.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 14.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 15.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 17.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 18.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 20.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 21.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 23.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 24.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 25.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 26.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Индивидуальное задание по теории вероятностей. Вариант № 29.
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •6). Случайная дискретная величина х задана законом распределения:
- •7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
- •8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
- •Контрольные вопросы.
- •Литература.
6). Случайная дискретная величина х задана законом распределения:
Х |
4,8 |
5,1 |
5,8 |
6,2 |
6,7 |
6,8 |
7,5 |
7,8 |
7,9 |
8,8 |
Р |
0,32 |
0,11 |
0,02 |
0,14 |
0,12 |
0,13 |
0,03 |
0,04 |
0,05 |
0,04 |
Требуется: а) найти выражение и построить график интегральной функции распределения случайной величины Х; б) найти математическое ожидание случайной величины ; в) найти дисперсию среднее квадратическое отклонение случайной величины (Х-7).
7). Случайная величина х имеет следующую интегральную функцию распределения вероятностей
Требуется: а) найти дифференциальную функцию распределения вероятностей; б) построить графики f(x) и F(x); в) найти вероятность того, что случайная величина Х принимает значение из интервала (4,5;6,5); г) найти числовые характеристики случайной величины Х.
8). Случайная величина х имеет следующую дифференциальную функцию распределения вероятностей
Требуется: а) найти интегральную функцию распределения вероятностей; б) построить графики f(x) и F(x); в) найти вероятность того, что случайная величина Х принимает значение из интервала (-1;2); г) найти числовые характеристики случайной величины Х.
9). Случайная непрерывная величина Х распределена по равномерному закону на промежутке (-4;5). Записать дифференциальную и интегральную функции распределения вероятностей и найти числовые характеристики случайной величины Х.
Индивидуальное задание по теории вероятностей. Вариант № 23.
1). Из колоды в 36 карт вынимают наугад две карты. Какова вероятность, что они одной масти?
2). Два охотника стреляют в волка, причём каждый делает по одному выстрелу. Для первого вероятность попадания в цель равна 0.7, для второго 0.8. Какова вероятность попадания в волка (хотя бы при одном выстреле)? Как изменится результат, если охотники сделают по два выстрела?
3). Детали для сборки вырабатываются на двух станках, из которых первый производит в три раза больше деталей, чем второй. При этом брак составляет в выпуске первого станка 2.5%, а в выпуске второго-1.5%. Найти вероятность того, что сборщик наудачу берёт годную деталь.
4). Детали, изготовленные цехом завода, попадают для проверки их на стандартность к одному из двух контролёров. Вероятность того, что деталь попадёт к первому контролёру, равна 0.7, а ковторому-0.3. Вероятность того, что годная деталь будет признана стандартной первым контролёром, равна 0.95, а вторым-0.98. Годная деталь при проверке была признана не стандартной. Найти вероятность того, что эту деталь проверял второй контролёр.
5). В прудах одного рыбного хозяйства карпы составляют 65% от всего количества рыбы.
Найти: наивероятнейшее число карпов в партии из 300 отловленных рыб; вероятность того, что
данная партия содержит ровно 125 карпов; не менее 130, но и не более 170 карпов.
6). Случайная дискретная величина х задана законом распределения:
Х |
5,0 |
5,2 |
5,8 |
6,4 |
6,7 |
6,8 |
7,5 |
7,6 |
7,9 |
9,0 |
Р |
0,32 |
0,11 |
0,02 |
0,14 |
0,12 |
0,13 |
0,03 |
0,04 |
0,05 |
0,04 |
Требуется: а) найти выражение и построить график интегральной функции распределения случайной величины Х; б) найти математическое ожидание случайной величины ; в) найти дисперсию среднее квадратическое отклонение случайной величины (Х-6,5).
