
- •Matlab учебное пособие
- •Содержание
- •Система математических расчетов matlab
- •Вызов и выход из matlab
- •Рабочий стол (desktop) системы matlab
- •Общие свойства и возможности рабочего стола matlab
- •Command Window (Командное окно)
- •1. Выполнение функций и ввод переменных
- •2. Вычисление выделенных функций и выражений (Evaluating a Selection)
- •3. Открытие выделения (Opening a Selection)
- •4. Ввод нескольких функций в одну строку
- •5. Ввод длинных функций
- •'Author Middle Initial’]
- •6. Окраска и выделение синтаксиса
- •7. Редактирование командной строки
- •8. Очистка командного окна
- •9. Подавление вывода результатов на экран
- •10. Разбиение экранного вывода на страницы
- •12. Распечатка содержания командного окна
- •13. Выполнение программ
- •Получение справок (Getting Help)
- •Рабочее пространство системы matlab
- •Name Size Bytes Class
- •V 5x9 90 char array Grand total is 286 elements using 2984 bytes
- •Clear a m
- •Просмотр и редактирование массивов данных при помощи редактора Array Editor
- •Пути доступа системы matlab
- •Add Folder… - Добавить директорию (папку).
- •Операции с файлами
- •Дуальность (двойственность) команд и функций
- •Действия над матрицами в системе matlab
- •Формирование матриц в системе matlab
- •Сложение и вычитание матриц
- •Векторное произведение и транспонирование матриц
- •Произведение матриц
- •Inner matrix dimensions must agree. Индексирование (Subscripts)
- •Index exceeds matrix dimensions
- •Двоеточие (Colon)
- •Единичная матрица, нулевая матрицы и матрица из единиц. Двумерные массивы случайных чисел
- •Решение систем линейных уравнений
- •Квадратные системы
- •Переопределенные системы
- •Недоопределенные системы
- •Обратные матрицы и детерминанты
- •Псевдообратные матрицы
- •Степени матриц и матричные экспоненты Положительные целые степени
- •Отрицательные и дробные степени
- •Поэлементное возведение в степень
- •Вычисление корня квадратного из матрицы и матричной экспоненты
- •Plot3(X(1,:), X(2,:), X(3,:), '-o')
- •Собственные значения и собственные векторы
- •Диагональная декомпозиция
- •Дефектные матрицы
- •Сингулярное разложение матриц
- •Для матрицы
- •Полиномы и интерполяция
- •Полиномы и действия над ними
- •Представление полиномов
- •Корни полинома
- •Характеристические полиномы
- •Poly(a)
- •Вычисление значений полинома
- •Polyval(p,5)
- •Умножение и деление полиномов
- •Вычисление производных от полиномов
- •Аппроксимация кривых полиномами
- •Plot(X, y, 'o', x2, y2); grid on
- •Разложение на простые дроби
- •Интерполяция
- •Одномерная интерполяция
- •1. Полиномиальная интерполяция
- •2. Интерполяция на основе быстрого преобразования Фурье _
- •Двумерная интерполяция
- •Сравнение методов интерполяции
- •Анализ данных и статистика
- •Основные функции обработки данных
- •Xlabel('Time')
- •Min(count(:))
- •Матрица ковариаций и коэффициенты корреляции
- •Cov(count(:,1))
- •Corrcoef(count)
- •Конечные разности
- •Diff(a)
- •Обработка данных
- •Отсутствующие значения
- •Удаление выбросов значений
- •Регрессия и подгонка кривых
- •Plot(t,y,'o'); grid on
- •Полиномиальная регрессия
- •Plot(t,y,'-',t,y,'o'); grid on
- •Линейно-параметрическая регрессия1
- •Множественная регрессия
- •Графический интерфейс подгонки кривых
- •Рассмотрение основных свойств ипк
- •Уравнения в конечных разностях и фильтрация
- •Воспользуемся данными матрицы count из раздела Анализ данных и статистика. Для на-шего примера, обозначим первый столбец матрицы count через вектор X :
- •Legend('Original Data','Smoothed Data',2)
- •Многомерные Массивы
- •Создание Многомерных Массивов
- •Size(c)
- •Ndims(c)
- •Индексация
- •Nddata (2, [1 3 4], 3). Оператор двоеточия и индексирование многомерных массивов.
- •Устранение неопределенностей в многомерной индексации
- •Изменение формы (Reshaping)
- •Поэлементное воздействие
- •Действия над плоскостями и матрицами
- •??? Error using eig
- •Input arguments must be 2-d.
- •Организация данных в многомерных массивах
- •Mean (mean (mean (temp)))
- •Организация и хранение данных
- •Структуры
- •Массивы структур
- •Создание массивов структур
- •Создание массивов структур с применением операторов присваивания.
- •1X2 struct array with fields:
- •Создание массива структур с использованием функции struct.
- •Обращение к данным в массивах структур.
- •1X2 struct array with fields:
- •Обращение к полям структуры с применением функций setfield и getfield
- •Определение размера массива структур
- •Добавление полей к структуре
- •Удаление поля из структуры
- •Применение функций и операторов
- •Mean((patient(2).Test)')
- •Создание функций для операций над массивами структур
- •Плоская организация
- •Поэлементная организация
- •Пример - Простая база данных
- •Client(a.Name(2,:),a.Address(2,:), a. Amount (2,:))
- •Client(b(2))
- •Вложенные структуры
- •Создание вложенных структур при помощи функции struct
- •Индексация вложенных структур
- •Массивы ячеек
- •Создание массивов ячеек
- •Применение операторов присваивания
- •Использование фигурных скобок для построения массивов ячеек
- •Задание массивов ячеек при помощи функции cell
- •Доступ к данным массивов ячеек
- •Доступ к данным массивов ячеек с использованием фигурных скобок
- •Обращение к подмножествам массива ячеек
- •Удаление ячеек
- •[3X3 double] [3x3 double]
- •Применение функций и операторов
- •Организация данных в массивах ячеек
- •Вложение массивов ячеек
- •Создание вложенных массивов при помощи вложенных фигурных скобок
- •Создание вложенных массивов при помощи функции cell
- •Индексация вложенных массивов ячеек
- •Преобразования между массивами ячеек и числовыми массивами
- •Массивы ячеек, содержащие структуры
- •Cell_array{index}.Field
- •C_str{1}.Label Многомерные массивы ячеек
- •Многомерные массивы структур
- •Типы м-файлов
- •Что такое м-файл ?
- •Обеспечение помощи для вашей программы
- •Help Имя_Функции
- •Help Имя_Директории
- •Создание м-файлов: Использование текстовых редакторов
- •Edit foo
- •Type fact
- •Сценарии
- •Простой пример сценария
- •Функции
- •Простой пример функции
- •Основные части синтаксиса м-функций
- •Строка определения функции
- •Тело функции
- •Комментарии
- •Имена функций
- •Как работает функция
- •Определение имени функции
- •Что происходит при вызове функцию
- •Создание p-кодов файлов
- •Pcode average
- •Как matlab передает аргументы функции
- •Рабочие пространства функций
- •Проверка числа аргументов функции
- •Передача переменного числа аргументов
- •Распаковка содержимого функции varargin
- •Упаковка выходных переменных в функцию varargout
- •Место функций varargin и varargout в списке аргументов
- •Локальные и глобальные переменные
- •Перманентные переменные (Persistent Variables)
- •Специальные переменные
- •Типы данных
- •Операторы
- •Арифметческие операторы
- •Арифметические операторы и массивы
- •Операторы отношения
- •Операторы отношения и массивы
- •Операторы отношения и пустые массивы
- •Логические операторы
- •Использованием логических операторов с массивами
- •Логические функции
- •Логические выражения использующие функцию find
- •Приоритеты операторов
- •Изменение приоритетов операторов
- •Команды управления данными (Flow Control)
- •Команды if, else, and elseif
- •If (логическое выражение)logical_expression
- •Команда if и пустые массивы
- •Команда switch
- •Команда while
- •Команда while и пустые массивы
- •While a
- •Команда for
- •Использование в качестве индексов массивов
- •Команда continue
- •Команда break
- •Команды try ... Catch
- •Команда return
- •Подфункции
- •Частные функции
- •Управление путями доступа (Managing the search path)
- •Приложение 3. Операторы и специальные символы
- •Приложение 4. Элементарные математические функции
- •Приложение 5. Элементарные матрицы и операции над ними
- •Приложение 8. Анализ данных и преобразование Фурье (Data analysis and Fourier transforms)
- •Справочник по базовым функциям системы matlab
- •Set(0, 'DefaultAxesColorOrder', [0 0 0], 'DefaultAxesLineStyleOrder', '-|-.|--|:')
- •Примеры
- •1. Задание цвета и размера маркеров
- •Set(gca, 'xTick',-pi : pi/2 : pi) set(gca, 'xTickLabel',{'-pi', '-pi/2', '0', 'pi/2', 'pi'})
- •Добавление заголовков, надписей к осям и аннотаций
- •Set(findobj(gca, 'Type', 'line', 'Color', [0 0 1]),...
- •Xlim, ylabel, ylim, zlabel, zlim, stem
- •Спецификаторы стилей линии
- •Спецификаторы маркеров
- •Спецификаторы цвета
- •Примеры
Анализ данных и статистика
В данном разделе будут рассмотрены некоторые основные возможности системы MATLAB в области анализа данных и статистической обработки информации. Помимо базовых функ-ций, в системе MATLAB имеется также ряд специализированных пакетов, предназначенных для решения соответствующих задач в различных приложениях (на английском языке даны названия пакетов) :
-
Optimization – Нелинейные методы обработки данных и оптимизация.
-
Signal Processing – Обработка сигналов, фильтрация и частотный анализ.
-
Spline – Аппроксимация сплайнами.
-
Statistics – Углубленный статистический анализ, нелинейная аппроксимация и
регрессия.
-
Wavelet - Импульсная декомпозиция сигналов и изображений.
Внимание ! MATLAB выполняет обработку данных, записанных в виде двумерных массивов по столбцам ! Одномерные статистические данные обычно хранятся в отдельных векорах, причем n-мерные векторы могут иметь размерность 1х n или nх1. Для многомерных данных матрица является естественным представлением, но здесь имеются две возможности для ориентации данных. По принятому в системе MATLAB соглашению, различные пере-менные должны образовывать столбцы, а соответствующие наблюдения - строки. Поэтому, например, набор данных, состоящий из 24 выборок 3 переменных записывается в виде мат-рицы размера 24х3.
Основные функции обработки данных
Перечень функций обработки данных, расположенных в директории MATLAB-а datafun приведен в Приложении 8 .
Рассмотрим гипотетический числовой пример, который основан на ежечасном подсчете чис-ла машин, проходящих через три различные пункта в течении 24 часов. Допустим, результа-ты наблюдений дают следующую матрицу count
count =
11 11 9
7 13 11
14 17 20
11 13 9
43 51 69
38 46 76
61 132 186
75 135 180
38 88 115
28 36 55
12 12 14
18 27 30
18 19 29
17 15 18
19 36 48
32 47 10
42 65 92
57 66 151
44 55 90
114 145 257
35 58 68
11 12 15
13 9 15
10 9 7
Таким образом, мы имеем 24 наблюдения трех переменных. Создадим вектор времени, t, со-стоящий из целых чисел от 1 до 24: t = 1 : 24. Построим теперь зависимости столбцов матри-цы counts от времени и надпишем график:
plot(t, count)
legend('Location 1','Location 2','Location 3',0)
Xlabel('Time')
ylabel('Vehicle Count')
grid on
где функция plot(t, count) строит зависимости трех векторов-столбцов от времени; функция
legend('Location 1','Location 2','Location 3',0) показывает тип кривых; функции xlabel и ylabel надписывают координатные оси, а grid on выводит координатную сетку. Соответству-ющий график показан ниже.
Применим к матрице count функции max (максимальное значение), mean (среднее значение) и std (стандартное, или среднеквадратическое отклонение).
mx = max(count)
mu = mean(count)
sigma = std(count)
В результате получим
mx =
114 145 257
mu =
32.00 46.5417 65.5833
sigma =
25.3703 41.4057 68.0281
где каждое число в строке ответов есть результат операции вдоль соответствующего столбца матрицы count. Для определения индекса максимального или минимального элемента нужно в соответствующей функции задать второй выходной параметр. Например, ввод
[mx,indx] = min(count)
mx =
7 9 7
indx =
2 23 24
показывает, что наименьшее число машин за час было зарегестрировано в 2 часа для первого пункта наблюдения (первый столбец) и в 23 и 24 чч. для остальных пунктов наблюдения.
Вы можете вычесть среднее значение из каждого столбца данных, используя внешнее произ-ведение вектора, составленного из единиц и вектора mu (вектора средних значений)
e = ones(24, 1)
x = count - e*mu
Перегруппировка данных может помочь вам в оценке всего набора данных. Так, использование в системе MATLAB в качестве единственного индекса матрицы двоеточия, приводит к представлению этой матрицы как одного длинного вектора, составленного из ее столбцов. Поэтому, для нахождения минимального значения всего множества данных можно ввести