Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физиология,экзамен шпоры.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
631.04 Кб
Скачать

59.Автоматия сердца. Строение проводящей системы сердца.

В конце 19 века в различных участках миокарда предсердий и желудочков были обнаружены скопления своеобразных по строению, мышечных клеток, которые назвали атипическими. Эти клетки больше в диаметре, чем сократительные, в них меньше сократительных элементов я больше гранул гликогена. В последние годы установлено, что скопления образованы Р-клеткамн (клетками Пуркинье) или пейсмекерными (ритмоводящими). Кроме того, в них имеются также переходные клетки. Они занимают промежуточное положение между сократительными и пейсмекерными кардиомиоцитами и служат для передачи возбуждения. Такие 2 типа клеток образуют проводящую систему сердца. В ней выделяют следующие узлы и пути:

1. Сино-атриальный узел (Кейс-Флека). Он расположен в устье полых вен т.е венозных синусах.

2. Межузловые и межпредсердные проводящие пути Бахмана, Венкенбаха и Торелла. Проходят по миокарду предсердий и межпредсердной перегородке.

3. Атриовентрикулярный узел (Ашофф-Тавара). Находится в нижней части межпредсердной перегородки под эндокардом правого предсердия.

4. Атриовентрикулярный пучок или пучок Гиса. Идет от атриовентрикулярного узла по верхней части межжелудочковой перегородке. Затем делится на две ножки -правую и левую. Они образуют ветви в миокарде желудочков.

5. Волокна Пуркинье. Это концевые разветвления ветвей ножек пучка Гиса. Образуют контакты с клетками

сократительного миокарда желудочков .

Синоатриальный узел образован преимущественно Р-клеткми. Остальные отделы проводящей системы переходными кардиомиоцитами. Однако небольшое количество клеток-пейсмекеров имеется и в них, а также сократительном миокарде предсердий и желудочков. Сократительные кардиомиоциты соединены с волокнами Пуркинье, а также между собой нексусами, т.е. межклеточными контактами с низким электрическим сопротивлением. Благодаря этому и примерно одинаковой возбудимости, кардиомиоцитов, миокард является функциональным синцитием. т.е. сердечная мышца реагирует на раздражение как единое целое.

Роль различных отделов проводящей системы в автоматии сердца впервые была установлена Станниусом и Гаскеллом. Станниус накладывал лигатуры (т.е делал перевязки) на различные участки сердца. Первая лигатура накладывается между венозным синусом, где расположен синоатриальный узел, и правым предсердием. После этого синус продолжает сокращаться в обычном ритме, т.е. с частотой 60-80 сокращений в минуту, а предсердия и желудочки останавливаются. Вторая лигатура накладывается на границе предсердий и желудочков. Это вызывает возникновение сокращений желудочков с частотой примерно в 2 раза меньшей, чем частота автоматии синусного узла, т.е. 30-40 в минуту. Желудочки начинают сокращаться из-за механического раздражения клеток атриовентрикулярного узла. Третья лигатура накладывается на середину желудочков. После этого их верхняя часть сокращается в атриовентрикулярном ритме, а нижняя с частотой в 4 раза меньше синусного ритма, т.е. 15-20 в минуту. Гаскелл вызывал местное охлаждение узлов проводящей системы и установил, что ведущим водителем ритма сердца является синоатриальный. На основании опытов Станниуса и Гаскелла был сформулирован принцип убывающего градиента автоматии. Он гласит, что чем дальше центр автоматии сердца расположен от его венозного конца и ближе к артериальному, тем меньше его способность к автоматии. В нормальных условиях синоатриальный узел подавляет автоматию нижележащих, т.к частота его спонтанной активности выше. Поэтому синоатриальный узел называют центром автоматии 1-го порядка, атриовентрикулярный 2-го, а пучок Гиса и волокна Пуркинье 3-го. Нормальная последовательность сокращений отделов сердца обусловлена особенностями проведения возбуждения по его проводящей системе. Возбуждение начинается в ведущем водителе ритма - синоатриальном узле. От него, по межпредсердным ветвям пучка Бахмана, возбуждение со скорость 0,9-1,0 м/сек, распространяется по миокарду предсердий. Начинается их систола одновременно от синусного узла возбуждение по межузловым путям Венкенбаха и Торелла достигает атриовентрикулярного узла. В нем скорость проведения резко снижается до 0,02-0,05 .м/сек. Возникает атриовентрикулярная задержка т.е. проведение импульсов к желудочкам задерживается на 0,02-0,04 сек.Благодаря этой задержке, кровь во время систолы предсердий поступает в еще на начавшие, сокращаться желудочки. От атриовентрикулярного узла по пучку Гиса, его ножкам и их ветвям, возбуждение идет со скоростью 2-4 м/сек. Благодаря такой высокой скорости оно одновременно, охватывает межжелудочковую перегородку и миокард, обоих желудочков. Скорость проведения возбуждения по миокарду желудочков 0,8-0,9м/сек.

Автоматия – это способность сердца сокращаться под влиянием импульсов, возникающих в нем самом. Обнаружено, что в клетках атипического миокарда могут генерироваться нервные импульсы. У здорового человека это происходит в области синоатриального узла, так как эти клетки отличаются от других структур по строению и свойствам. Они имеют веретеновидную форму, расположены группами и окружены общей ба-зальной мембраной. Эти клетки называются водителями ритма первого порядка, или пейсмекерами. В них с высокой скоростью идут обменные процессы, поэтому метаболиты не успевают выноситься и накапливаются в межклеточной жидкости. Также характерными свойствами являются низкая величина мембранного потенциала и высокая проницаемость для ионов Na и Ca Отмечена довольно низкая активность работы натрий-калиевого насоса, что обусловлено разностью концентрации Na и K.

Автоматия возникает в фазу диастолы и проявляется движением ионов Na внутрь клетки. При этом величина мембранного потенциала уменьшается и стремится к критическому уровню деполяризации – наступает медленная спонтанная диастолическая деполяризация, сопровождающаяся уменьшением заряда мембраны. В фазу быстрой деполяризации возникает открытие каналов для ионов Na и Ca, и они начинают свое движение внутрь клетки. В результате заряд мембраны уменьшается до нуля и изменяется на противоположный, достигая +20–30 мВ. Движение Na происходит до достижения электрохимического равновесия по ионам Na, затем начинается фаза плато. В фазу плато продолжается поступление в клетку ионов Ca. В это время сердечная ткань невозбудима. По достижении электрохимического равновесия по ионам Ca заканчивается фаза плато и наступает период реполяризации – возвращения заряда мембраны к исходному уровню.

Потенциал действия синоатриального узла отличается меньшей амплитудой и составляет ±70–90 мВ, а обычный потенциал ровняется ±120–130 мВ.

В норме потенциалы возникают в синоатриальном узле за счет наличия клеток – водителей ритма первого порядка. Но другие отделы сердца в определенных условиях также способны генерировать нервный импульс. Это происходит при выключении синоат-риального узла и при включении дополнительного раздражения.

При выключении из работы синоатриального узла наблюдается генерация нервных импульсов с частотой 50–60 раз в минуту в атриовентрикулярном узле – водителе ритма второго порядка. При нарушении в ат-риовентрикулярном узле при дополнительном раздражении возникает возбуждение в клетках пучка Гиса с частотой 30–40 раз в минуту – водитель ритма третьего порядка.

Градиент автоматии – это уменьшение способности к автоматии по мере удаления от синоатриального узла, т Установка А.Кулябко для оживления сердца Падре реанимационе

Опыт Кулябко

В 1905 году русскому физиологу А.Кулябко доставили сердца детей, умерших от пневмонии в одной из петербургских клиник. Кулябко подвесил их на трапеции и подвел к каждому теплый физиологический раствор, насыщенный кислородом. Жидкость попадала по остатку аорты в сердечные сосуды, проходила через капиллярную сеть и стекала через вены. Первые опыты ученого ни к чему не привели: десятиминутная прокачка раствора не оживляла мертвые сердца. Тогда, "по законам жанра", профессор вышел в буфет попить чайку, забыв снять сердце с трапеции. Вернувшись через полчаса, он застал орган сокращающимся – через сутки после смерти!

Чтобы понять дальнейшую логику раз вития событий, рассмотрим механизм "чудесного оживления". В опытах А.Кулябко питательный раствор вливался в сердце не через вены, как у живого человека, а через остаток аорты (у живого человека кровь не входит, а выходит из сердца через аорту). Так был сформулирован закон оживления: в обескровленное сердце кровь надо нагнетать не по ходу ее нормального движения "сердце – аорта", а наоборот: "аорта - сердце".

60.Блокада проведения возбуждения чаще встречается в атриовентрикулярном узле или в ножках пучках Гиса, является результатом патологического процесса в сердце. Блокада может быть полной , когда импульс от предсердий не доходит до желудочков – в это случае они сокращаются независимо друг от друга, каждый в своем ритме. Блокада может быть неполной, когда часть импульсов предсердий доходит до желудочков.

Последствия нарушения проводящей системы сердца:

1. сбой в функционирования синусового узла:

- учащение или замедление сердечного ритма (соответственно, тахикардии и брадикардии)

- синдром слабости синусового узла (когда эпизоды тахикардии сменяются брадикардией)

2. нарушение проводимости импульсов внутри предсердий, от предсердий к желудочкам или внутри желудочков (внутрипредсердные блокады, АВ-блокады и блокады ножек пучка Гиса)

3. возникновение в каком-либо участке миокарда очагов, способных вырабатывать импульсы к сокращению сердца, помимо синусового узла

4. наличие дополнительных пучков для проведения импульсов.

61.Экстрасистола – это внеочередное сокращение сердца. Экстрасистолы могут возникать не только у больного, но и у здорового человека. У человека возникающие спонтанно экстрасистолы могут быть желудочковыми (очаг возбуждения находится в желудочке) и предсердными - внеочередной (более ранний) импульс возникает в предсердиях. После желудочковой экстрасистолы возникает компенсаторная пауза, которая является следствием выпадения очередной систолы, так как очередной импульс приходит во время экстрасистолы – в период рефрактерности. Предсердная экстрасистола не сопровождается компенсаторной паузой. Механизмы развития экстрасистолии существует несколько теорий:

1)теория эктопического автоматизма, в соответствии с которой спонтанно возникающая диастолическая деполяризация достигает величины порогового потенциала и приводит к сердечному сокращению;

2)теория "повторного входа", в соответствии с которой при замедлении проведения возбуждения в определенных участках миокарда волокна деполяризуются и реполяризуются с различной скоростью; при этом импульс может поступить повторно в волокно, обладающее большей скоростью реполяризации, вследствие того, что соседнее волокно задержало проведение этого импульса и дальше находится в состоянии деполяризации;

3)теория следовых потенциалов, которые представляют собой осциллирующие колебания, следующие за потенциалом действия; при соответствующих условиях они могут достигать пороговой величины и вызывать повторный импульс;

В настоящее время наиболее общепринятой является теория "повторного входа"

62Волокна от правого блуждающего нерва иннервируют преимущественно правое предсердие и особенно обильно синоартериальный узел. К атриовентрикулярному узлу подходят главным образом волокна от левого блуждающего нерва. Парасимпатическая иннервация желудочков выражена слабее, нежели предсердий.

Синоатриальный узел иннервируется преимущественно правым симпатическим нервом, атриовентрикулярный узел – преимущественно левым симпатическим нервом. Симпатические нервы в отличие от парасимпатических равномерно распределены по всем отделам сердца. Однако плотность распределения симпатических нервных волокон в правом желудочке сердца больше, нежели в левом, что, связанно с меньшей массой правого желудочка. Постганглионарные симпатические волокна подходят к сердцу в составе нескольких сердечных нервов, их волокна распределяются в миокарде более поверхностно, чем парасимпатические.

Таким образом, блуждающий нерв при своем возбуждении оказывает только тормозное, а симпатический – только стимулирующее влияние на сокращения сердца. Эфферентные влияния симпатического и парасимпатического нервов выражаются не только в изменении частоты сердечных сокращений (хронотропное влияние), но и силы (инотропное влияние), а также в изменении проводимости (дромотропное) и возбудимости (батмотропное влияние). Все влияния на сердце блуждающего нерва являются отрицательными, а симпатического нерва положительными.

63Минутный объем крови – количество крови, выбрасываемой сердцем в аорту в течение 1 мин. Минутный выброс (МВ) является самым надежным критерием эффективности деятельности сердца. Количество крови, выбрасываемое левым желудочком в аорту за одно сокращение, называют систолическим объемом (СО). МВ в состоянии покоя колеблется в пределах 4 -6 л он прямо зависит от массы тела. При большой физ.нагрузке МВ может возрасти до 25 -30 л/мин.

СО в покое составляет 65-75 мл. У человека выделяют три рефлексогенные зоны, постоянно участвующие в регуляции деятельности сердца и просвета сосудов, - это аортальная, синокаротидная и зона, расположенная в правом предсердии у впадения полых вен. При повышении давления в аорте и растяжении ее стенки возникает возбуждение в прессорецепторах, которое по аортальному нерву идет к продолговатому мозгу. При этом повышается тонус центра блуждающего нерва, что приводит к увеличению количества тормозящих импульсов идущих к сердцу по его волокнам и уменьшению вследствие этого частоты и силы сердечных сокращений.

Одновременно изменяется тонус сосудодвигательного центра: уменьшается тонус сосудосуживающего и увеличивается тонус сосудорасширяющего центра, вследствие чего уменьшается поток импульсов, вызывающих сужение сосудов - они расширяются. Оба эти механизма, запущенные повышенны давлением в аорте, обеспечивают снижение кровяного давления. Синокаротидная рефлексогенная зона располагается в области разветвления общей сонной артерии на наружную и внутреннюю. От этой зоны идет афферентный синокаротидный нерв, или нерв Геринга, в составе языкоглоточного к продолговатому мозгу. Механизм действия этой и аортальной зон одинаков.Важное значение имеет и рефлексогенная зона, расположенная в правом предсердии, ее рецепторы лежат в устьях полых вен и в мышечной стенке предсердий. Прессорецепторы этой зоны возбуждаются при повышении давления в момент растяжения вен и предсердий поступающей в них кровью. Возникающие здесь афферентные импульсы идут в центральную нервную систему и вызывают понижение тонуса центра блуждающего нерва и повышение - симпатического. Вследствие этого уменьшается количество тормозящих импульсов, идущих к сердцу, сердце сокращается сильнее и чаще, при этом больше крови выносится из полых вен и давление в них уменьшается.

64 Рефлекторные реакции могут как тормозить (замедлять и ослаблять), так и возбуждать (ускорять и усиливать) сердечные сокращения.Рефлекторные изменения работы сердца возникают при раздражении различных рецепторов. Особое значение в регуляции работы сердца имеют рецепторы, расположенные в некоторых участках сосудистой системы. Эти рецепторы возбуждаются при изменении давления крови в сосудах или при воздействии гуморальных (химических) раздражителей. Участки, где сосредоточены такие рецепторы, получили название сосудистых рефлексогенных зон. Наиболее значительна роль рефлексогенных зон, расположенных в дуге аорты и в области разветвления сонной артерии. Здесь находятся окончания центростремительных нервов, раздражение которых рефлекторно вызывает урежение сердечных сокращений. Эти нервные окончания представляют собой барорецепторы. Естественным их раздражителем служит растяжение сосудистой стенки при повышении давления в тех сосудах, где они расположены. Поток афферентных нервных импульсов от этих рецепторов повышает тонус ядер блуждающих нервов, что приводит к замедлению сердечных сокращений. Чем выше давление крови в сосудистой рефлексогенной зоне, тем чаще возникают афферентные импульсы.

Рефлекторные изменения сердечной деятельности можно вызвать раздражением рецепторов и других кровеносных сосудов. Например, при повышении давления в легочной артерии замедляется работа сердца. Можно изменить сердечную деятельность и путем раздражения рецепторов сосудов многих внутренних органов.

Обнаружены также рецепторы в самом сердце: эндокарде, миокарде и эпикарде; их раздражение рефлекторно изменяет и работу сердца, и тонус сосудов.

В правом предсердии и в устьях полых вен имеются механорецепторы, реагирующие на растяжение (при повышении давления в полости предсердия или в полых венах). Залпы афферентных импульсов от этих рецепторов проходят по центростремительным волокнам блуждающих нервов к группе нейронов ретикулярной формации ствола мозга, получивших название «сердечно-сосудистый центр». Афферентная стимуляция этих нейронов приводит к активации нейронов симпатического отдела автономной нервной системы и вызывает рефлекторное учащение сердечных сокращений. Импульсы, идущие в ЦНС от механорецепторов предсердий, влияют и на работу других органов.

65 Гуморальная регуляция сердечной деятельности

Изменения деятельности сердца наблюдаются и при действии на него ряда биоло­гически активных веществ, циркулирующих в крови.

Катехоламины (адреналин, норадреналин) резко увеличивают силу и учащают ритм сердечных сокращений, что имеет важное биологическое значение. При резких физических нагрузках или состоянии эмоционального напряжения мозговой слой надпочечников выбрасывает в кровь большие количества адреналина. Это приводит к резкому усилению сердечной деятельности, крайне необходимому в данных условиях.

Указанный эффект возникает в результате стимуляции катехоламинами р-рецепто-ров миокарда, вызывающей активацию внутриклеточного фермента аденилатциклазы, которая ускоряет реакцию образования 3,5-циклического аденозинмонофосфата (цАМФ). цАМФ активирует фосфорилазу, вызывающую расщепление внутримышечного гликогена и образование глюкозы (источника энергии для сокращающегося миокарда). Кроме того, фосфорилаза необходима для активации ионов Са2+ — агента, реализующего сопряжение возбуждения и сокращения в миокарде (это также усиливает положительное инотропное действие катехоламинов). Помимо этого, катехоламины повышают проницаемость клеточных мембран для ионов Са2+. способствуя, с одной стороны, усилению поступления их из межклеточного пространства в клетку, а с другой — мобили­зации ионов Са2+ из внутриклеточных депо.

Активация аденилатииклазы отмечается в миокарде и при действии глюкагона — гормона, выделяемого а-клетками островков поджелудочной железы, что также вызывает положительный инотропный эффект. Гормоны коры надпочечников, ангиотензнн и серотонин также увеличивают силу сокращений миокарда, а тироксин учащает сердечный ритм. Гипоксемия, гиперкапния и ацидоз угнетают сократительную активность миокарда

66 По особенностям функционирования выделяют 5 типов кровеносных сосудов:

1)Магистральные – наиболее крупные артерии, в которых ритмически пульсирующий кровоток превращается в более равномерный и плавный. Это сглаживает резкие колебания давления, что способствует бесперебойному снабжению кровью органов и тканей. Стенки этих сосудов содержат мало гладкомышечных элементов и много эластических волокон.

2)Резистивные (сосуды сопротивления) – включают в себя прекапиллярные (мелкие артерии, артериолы) и посткапиллярные (венулы и мелкие вены) сосуды сопротивления. Соотношение между тонусом пре- и посткапиллярных сосудов определяет уровень гидростатического давления в капиллярах, величину фильтрационного давления и интенсивность обмена жидкости.

3)Истинные капилляры (обменные сосуды) – важнейший отдел ССС. Через тонкие стенки капилляров происходит обмен между кровью и тканями.

4)Емкостные сосуды – венозный отдел ССС. Они вмещают около 70-80% всей крови.

5)Шунтирующие сосуды – артериовенозные анастомозы, обеспечивающие прямую связь между мелкими артериями и венами в обход капиллярного ложа.

6)сосуды «депо»- хранение крови, селезёнка (500 мл), печень (200 -300 мл), движение крови медленное.

67 Основные законы гемодинамики

1. Равенство объемов кровотока. Объем крови, протекающей через поперечное сечение сосуда в единицу времени, называют объемной скоростью кровотока (мл/мин). Объемная скорость кровотока через большой и малый круг кровообращения одинакова. Объем кровотока через аорту или легочный ствол равен объему кровотока через суммар¬ное поперечное сечение сосудов на любом отрезке кругов кровообращения.

2. Движущей силой, обеспечивающей кро¬воток, является разность кровяного давления между проксимальным и дистальным участ¬ками сосудистого русла. Давление крови со¬здается работой сердца и зависит от упруго-эластических свойств сосудов.

Поскольку давление в артериальной части кругов кровообращения является пульсирую¬щим в соответствии с фазами работы сердца, для его гемодинамической характеристики принято использовать величину среднего давления (Рср.). Это усредненное давление, которое обеспечивает такой же эффект дви¬жения крови, как и пульсирующее давление. Среднее давление в аорте равно примерно 100 мм рт.ст. Давление в полых венах колеб¬лется около нуля. Таким образом, движущая сила в большом круге кровообращения рав¬на разнице между этими величинами, т.е. 100 мм рт.ст. Среднее давление крови в ле¬гочном стволе менее 20 мм рт.ст., в легочных венах близко к нулю — следовательно, дви-жущая сила в малом круге — 20 мм рт.ст., т.е. в 5 раз меньше, чем в большом. Равенство объемов кровотока в большом и малом круге кровообращения при существенно различаю¬щейся движущей силе связано с различиями в сопротивлении току крови — в малом круге оно значительно меньше.

3. Сопротивление в кровеносной системе. Если общее сопротивление току крови в со¬судистой системе большого круга принять за 100 %, то в разных ее отделах сопротивление распределится следующим образом. В аорте, крупных артериях и их ветвях сопротивление току крови составляет около 19 %; на долю мелких артерий (диаметром менее 100 мкм) и артериол приходится 50 % сопротивления; в капиллярах сопротивление составляет при¬мерно 25 %, в венулах — 4 %, в венах — 3 %. Общее периферическое сопротивление (ОПС) — это суммарное сопротивление всех параллельных сосудистых сетей большого круга кровообращения. Оно зависит от гра¬диента давления (АР) в начальном и конеч¬ном отделах большого круга кровообращения

и объемной скорости кровотока (Q). Если градиент давления равен 100 мм рт.ст., а объ¬емная скорость кровотока — 95 мл/с, то ве¬личина ОПС составит:

В сосудах малого круга кровообращения общее сопротивление равно примерно 11 Па • с/мл.

Сопротивление в региональных сосудис¬тых сетях различно, оно наименьшее в сосу¬дах чревной области, наибольшее — в коро¬нарном сосудистом русле.

68. Давление крови в различных отделах сосудистого русла неодинаково: в артериальной системе оно выше, в венозной ниже.

Кровяное давление—давление крови на стенки кровеносных сосудов. Нормальное кровяное давление необходимо для циркуляции крови и надлежащего снабжения кровью органов и тканей, для образования тканевой жидкости в капиллярах, а также для осуществления процессов секреции и экскреции. Величина кровяного давления зависит от трех основных факторов: частоты и силы сердечных сокращений; величины периферического сопротивления, т. е. тонуса стенок сосудов, главным образом артериол и капилляров; объема циркулирующей крови.

Различают артериальное, венозное и капиллярное давление крови.

Артериальное кровяное давление. Величина артериального давления у здорового человека является довольно постоянной, Однако она всегда подвергается небольшим колебаниям в зависимости от фаз деятельности сердца и дыхания.

Различают систолическое, диастолическое, пульсовое и среднее артериальное давление.

Систолическое (максимальное) давление отражает состояние миокарда левого желудочка сердца. Его величина 100—120 мм рт. ст.

Диастолическое (минимальное) давление характеризует степень тонуса артериальных стенок. Оно равняется 60—80 мм рт. ст.

Пульсовое давление — это разность между систолическим и диастолическим давлением. Пульсовое давление необходимо для открытия полулунных клапанов во время систолы желудочков. В норме пульсовое давление составляет 35—55 мм рт. ст. Если систолическое давление станет равным диастолическому - движение крови будет невозможным и наступит смерть. Среднее артериальное давление равняется сумме диастолического и '/з пульсового давления. На величину артериального давления оказывают влияние различные факторы: возраст, время суток, состояние организма, центральной нервной системы и т.д. С возрастом максимальное давление увеличивается в большей степени, чем минимальное. В течение суток наблюдается колебание величины давления: днем оно выше, чем ночью. Значительное повышение максимального артериального давления может наблюдаться при тяжелой физической нагрузке, во время спортивных состязаний и др. После прекращения работы или окончания соревнований артериальное давление быстро возвращается к исходным показателям. Повышение артериального давления называется гипертонией. Понижение артериального давления называется гипотонией. Гипотония может наступить при отравлении наркотиками, при сильных травмах, обширных ожогах, больших кровопотерях.

69 Артериальный пульс. Это периодические расширения и удлинения стенок артерий, обусловленные поступлением крови в аорту при систоле левого желудочка. Пульс характеризуется рядом качеств, которые определяются путем пальпации чаще всего лучевой артерии в нижней трети предплечья, где она расположена наиболее поверхностно;

Пальпаторно определяют следующие качества пульса: частоту —количество ударов в 1 мин, ритмичность — правильное чередование пульсовых ударов, наполнение — степень изменения объема артерии, устанавливаемая по силе пульсового удара, напряжение —характеризуется силой, которую надо приложить, чтобы сдавить артерию до полного исчезновения пульса.

Венный пульс - это колебания стенки магистральных вен, расположенных около сердца (например, яремных вен), обусловленные изменением в них давления крови и объёма крови. При работе сердца эти колебания обусловлены ретроградным давлением крови в правом предсердии, то есть центральным венозным давлением. В средних и мелких венах пульсовые колебания давления отсутствуют. Происхождение пульсовой волны венного пульса иное, чем артериального. В то время как причиной артериального пульса является систолическое ускорение, сообщаемое столбу крови энергией сердечного сокращения, причиной венного пульса является прекращение оттока крови из вен к сердцу во время систолы предсердий и желудочков. В этот момент ток крови в больших венах задерживается и давление в них возрастает.

70 В продолговатом мозге локализуется сосудодвигательный центр, который состоит из двух областей – прессорной и депрессорной. Возбуждение нейронов прессорной области приводит к повышению тонуса сосудов и уменьшению их просвета, возбуждение нейронов депрессорной зоны обусловливает понижение тонуса сосудов и увеличение их просвета.Тонус сосудодвигательного центра зависит от нервных импульсов, постоянно идущих к нему от рецепторов рефлексогенных зон. Особенно важная роль принадлежит аортальной и каротидной рефлексогенным зонам.

Рецепторная зона дуги аорты представлена чувствительными нервными окончаниями депрессорного нерва, являющегося веточкой блуждающего нерва. В области сонных синусов располагаются механорецепторы, связанные с языкоглоточным (IX пара ЧМН) и симпатическими нервами. Естественным раздражителем их является механическое растяжение, которое наблюдается при изменении величины артериального давления. При повышении артериального давления в сосудистой системе возбуждаются механорецепторы. Нервные импульсы от рецепторов по депрессорному нерву и блуждающим нервам направляются в продолговатый мозг к сосудодвигательному центру. Под влиянием этих импульсов снижается активность нейронов прессорной зоны сосудодвигательного центра, что приводит к увеличению просвета сосудов и снижению АД. При уменьшении АД наблюдаются противоположные изменения активности нейронов сосудодвигательного центра, приводящие к нормализации АД.В восходящей части аорты, в ее наружном слое, располагается аортальное тельце, а в области разветвления сонной артерии – каротидное тельце, в которых локализованы хеморецепторы, чувствительные к изменениям химического состава крови, особенно к сдвигам содержания углекислого газа и кислорода. Сужение и расширение сосудов в организме имеют различное функциональное назначение. Сужение сосудов обеспечивает перераспределение крови в интересах целого организма, в интересах жизненно важных органов, когда, например, в экстремальных условиях отмечается несоответствие между объемом циркулирующей крови и емкостью сосудистого русла. Расширение сосудов обеспечивает приспособление кровоснабжения к деятельности того или иного органа или ткани.

71 Гуморальная регуляция тонуса сосудов. Некоторые гуморальные агенты суживают, а другие расширяют просвет артериальных сосудов. К сосудосуживающим веществам относятся гормоны мозгового вещества надпочечников – адреналин и норадреналин , а также задней доли гипофиза – вазопрессин. Адреналин и норадреналин суживают артерии и артериолы кожи, органов брюшной полости и легких, а вазопрессин действует преимущественно на артериолы и капилляры. К числу гуморальных сосудосуживающих факторов относится серотонин , продуцируемый в слизистой оболочке кишечника и некоторых участках головного мозга. Серотонин образуется также при распаде кровяных пластинок. Физиологическое значение серотонина в данном случае состоит в том, что он суживает сосуды и препятствует кровотечению из пораженного участка. К сосудосуживающим веществам относится ацетилхолин , который образуется в окончаниях парасимпатических нервов и симпатических вазодилятаторов. Он быстро разрушается в крови, поэтому его действие на сосуды в физиологических условиях чисто местное. Сосудорасширяющим веществом является также гистамин – вещество, образующееся в стенке желудка и кишечника, а также во многих других органах, в частности в коже при ее раздражении и в скелетной мускулатуре во время работы. Гистамин расширяет артериолы и увеличивает кровенаполнение капилляров.

Рефлекторная регуляция сосудистого тонуса. Тонус сосудодвигательного центра зависит от афферентных сигналов, приходящих от периферических рецепторов, расположенных в некоторых сосудистых областях и на поверхности тела, а также от влияния гуморальных раздражителей, действующих непосредственно на нервный центр. Следовательно, тонус сосудодвигательного центра имеет как рефлекторное, так и гуморальное происхождение. Рефлекторные изменения тонуса артерий - сосудистые рефлексы - могут быть разделены на две группы: собственные и сопряженные рефлексы. Собственные сосудистые рефлексы вызываются сигналами от рецепторов самих сосудов. Морфологическими исследованиями обнаружено большое число таких рецепторов. Особенно важное физиологическое значение имеют рецепторы, сосредоточенные в дуге аорты и в области разветвления сонной артерии на внутреннюю и наружную. Рецепторы сосудистых рефлексогенных зон возбуждаются при изменении давления крови в сосудах. Поэтому их называют прессорецепторами, или барорецепторами. Сосудистые рефлексы можно вызвать, раздражая рецепторы не только дуги аорты или каротидного синуса, но и сосудов некоторых других областей тела. Так, при повышении давления в сосудах легкого, кишечника, селезенки наблюдаются рефлекторные изменения артериального давления и других сосудистых областях. Рефлекторная регуляция давления крови осуществляется при помощи не только механорецепторов, но и хеморецепторов, чувствительных к изменениям химического состава крови. Такие хеморецепторы сосредоточены в аортальном и каротидном тельцах, т. е. в местах локализации прессорецепторов. Хеморецепторы чувствительны к двуокиси кислорода и недостатку кислорода и крови; они раздражаются также окисью углерода, цианидами, никотином. От этих рецепторов возбуждение по центростремительным нервным волокнам передается к сосудодвигателыюму центру и вызывает повышение его тонуса. В результате сосуды суживаются и давление повышается. Одновременно происходит возбуждение дыхательного центра. Хеморецепторы обнаружены также в сосудах селезенки, надпочечников, почек, костного мозга. Они чувствительны к различным химическим соединениям, циркулирующим в крови, например, к ацетилхолину, адреналину и др. Сопряженные сосудистые рефлексы , т. е. рефлексы, возникающие в других системах и органах, проявляются преимущественно повышением артериального давления. Их можно вызвать, например, раздражением поверхности тела. Так, при болевых раздражениях рефлекторно суживаются сосуды, особенно органов брюшной полости, и артериальное давление повышается. Раздражение кожи холодом также вызывает рефлекторное сужение сосудов, главным образом кожных артериол.

72 Микроциркуляция (греч. mikros малый + лат. circulatio круговращение) — транспорт биологических жидкостей на уровне тканей организма: движение крови по микрососудам капиллярного типа (капиллярное кровообращение), перемещение интерстициальной жидкости и веществ по межклеточным пространствам и транспорт лимфы по лимфатическим микрососудам. Основной задачей системы М. в организме является поддержание динамического равновесия объемных и массовых параметров жидкости и веществ в тканях — обеспечение гомеостаза внутренней среды. Система М. осуществляет транспорт крови и лимфы по микрососудам, перенос газов ,воды, микро- и макромолекул через биологические барьеры (стенки капилляров) и движение веществ во внесосудистом пространстве.Центральное звено системы — кровеносные и лимфатические капилляры, самые тонкостенные сосуды диаметром от 3—5 до 30—40 мкм. являющиеся важнейшим компонентом биологических барьеров. Стенки кровеносных капилляров, сформированные в основном из специализированных эндотелиальных клеток допускают избирательное снабжение рабочих элементов ткани кислородом, ионами. биологически активными молекулами, плазменными протеинами и другими веществами, циркулирующими в крови. Лимфатические капилляры стенки которых также образованы эндотелием, эвакуируют из тканей избыток жидкости, молекулы белка и продукты обмена клеток. Состояние капиллярного кровообращения определяют резистивные микрососуды — артериолы и прекапилляры, имеющие гладкие мышечные клетки. Последние обеспечивают изменения величины рабочего просвета сосудов и, следовательно, объема крови, поступающего в капилляры. Из капилляров кровь собирается в емкостные сосуды — посткапилляры и венулы, которые также включены в процессы транспорта веществ. Пути внекапиллярного кровотока (анастомозы, шунты) участвуют в кровенаполнении капилляров. Транспорт веществ через эндотелиальную выстилку кровеносных и лимфатических сосудов капиллярного типа (сосудистая проницаемость) осуществляется посредством межклеточных контактов, открытых и диафрагмированных фенестр и пор, а также системой плазмолеммальных везикул, или инвагинаций. Многочисленность структур, образованных клеточной мембраной служит отличительным признаком эндотелиальных клеток. Основной движущей силой, доставляющей тканям кровь и обеспечивающей продвижение интерстициальной жидкости и лимфы, является пропульсивная деятельность сердца.

С функциональной точки зрения все транспортные процессы в системе М. взаимосвязаны и взаимообусловлены. Эта взаимосвязь достигается благодаря градиентам сил (давлений) и концентраций на уровне эндотелиальных барьеров, разделяющих компартменты, и в каждом из них. Кровь как сложная гетерогенная система корпускулярной природы имеет реологические свойства, существенно отличающие ее от других жидкостей. На условия гемодинамики в системе М. оказывают влияние не только структурные механизмы микроциркуляторного русла, но и агрегатное состояние крови, взаимодействие между форменными элементами и циркулирующей плазмой. Гемодинамические параметры в микрососудах тесно связаны с проницаемостью их стенок, а последняя отражает градиенты сил и концентрацию белков в интерстиции. В свою очередь, условия, существующие в интерстициальном окружении лимфатических капилляров, формируют механизмы лимфообразования и продвижения лимфы. М. как основная система, интегрирующая жизнедеятельность тканей, регулируется преимущественно местными механизмами контроля — медиаторным, миогенным. Нервные и гуморальные влияния реализуются на уровне гладкомышечного аппарата резистивных микрососудов и в сокращении эндотелиальных клеток. В деятельности системы М. очень эффективно проявляется принцип саморегуляции, в соответствии с которым изменения функциональных параметров в каждом из трех компартментов и на границах между ними существенно влияют на транспортные явления в соседних отсеках. Основные параметры, характеризующие функционирование системы М., определяются условиями гемодинамики на уровне капилляров, проницаемостью их стенок, силами, обеспечивающими движение интерстициальной жидкости и лимфы. Скорость кровотока в капиллярах обычно не превышает 1 мм/с, причем эритроциты движутся несколько быстрее плазмы. Гидростатическое давление в сосудах капиллярного типа в разных органах регистрируется в диапазоне 18—40 мм рт. ст. Как правило, оно несколько превосходит коллоидно-осмотическое давление белков плазмы (19—21 мм рт. ст.), благодаря чему градиент давления через стенки капилляров направлен в сторону ткани и фильтрация жидкости доминирует над реабсорбцией ее в плазму. Избыточный объем поступающей в ткань жидкости реабсорбируется корнями лимфатической системы или используется на образование секретов, например в пищеварительных железах. Гидравлическая проводимость стенок кровеносных микрососудов, т.е. проницаемость для воды, колеблется в зависимости от их характера (артериальные или венозные капилляры, венулы) и органной принадлежности. В капиллярах с непрерывным эндотелием (мышцы, кожа, сердце, ц.н.с.) она варьирует в пределах (1—130)×10-3 мкм/с×мм рт. ст. Величина проводимости фенестрированного эндотелия (почки, слизистая оболочка кишки, железы) обычно на 2—3 порядка выше. Другой важный параметр, характеризующий способность капиллярной стенки пропускать вещества, растворимые в воде, — коэффициент осмотического отражения — является безразмерной величиной и не превышает 1. Его значения особенно важны для оценки проницаемости эндотелия по отношению к белкам плазмы крови. В стенке капилляров коэффициент отражения белков типа альбумина составляет 0,7—0,9. Это означает, что проницаемость капиллярного эндотелия для макромолекул невелика; для ионов и небольших молекул значения коэффициента отражения близки к 0,1. Еще один параметр — коэффициент проницаемости для ионов К+, Na+ имеет величину порядка 10-5 см/с. Для молекул средней массы (сахара, аминокислоты) он несколько меньше.Величина гидростатического давления интерстициальной жидкости (в межклеточном пространстве) оценивается обычно как близкая к нулю, т.е. мало отличающаяся от величины атмосферного давления. При некоторых методах измерения регистрируются значения меньше, чем атмосферное давление: -6 -8 мм рт. ст. Хотя проницаемость стенок капилляров для белков ограничена, их содержание в тканях составляет 30—40% всей массы циркулирующего в организме протеина. Коллоидно-осмотическое давление в интерстициальной жидкости достигает 10 мм рт. ст. Низкое гидростатическое давление и высокое коллоидно-осмотическое в интерстициальном пространстве способствуют фильтрации жидкости в ткань и поступлению туда веществ, растворенных в плазме крови. Градиенты давления в интерстиции вызывают перемещение растворов в нем и тем самым доставку необходимых продуктов к рабочим клеткам. Плазменные протеины, которые также поступают в межклеточную среду, эвакуируются в основном лимфатическими капиллярами. Давление в их просвете, по-видимому, мало отличается от атмосферного, т. е. по отношению к давлению крови близко к нулю. По мере продвижения лимфы по сосудам оно несколько увеличивается и на выходе из системы М. может достигать 14—16 мм рт. ст. Хотя механизмы перемещения лимфы в микрососудах еще недостаточно ясны, показано, что большую роль играют сокращения крупных лимфатических сосудов (лимфангионов), имеющих развитую мышечную оболочку.Наряду с обеспечением процессов обмена веществ между плазмой (лимфой) и рабочими элементами ткани система М. выполняет и другие функции, жизненно необходимые для нормальной деятельности организма.

73 Лимфа и ее движение

В организме наряду с системой кровеносных сосудов имеется система лимфати­ческих сосудов. Она начинается с разветвленной сети замкнутых капилляров ( 144), стенки которых обладают высокой проницаемостью и способностью всасывать коллоидные растворы и взвеси. Лимфатические капилляры впадают в лимфатические сосуды, по которым находящаяся в них жидкость — лимфа — притекает к двум крупным лимфатическим протокам — шейному и грудному, впадающим в подключичные вены.

В отличие от кровеносных сосудов, по которым происходит как приток крови к тка­ням тела, так и ее отток от них, лимфатические сосуды служат лишь для оттока лимфы, т. е. возвращают в кровь поступившую в ткани жидкость. Лимфатические сосуды являются как бы дренажной системой, удаляющей избыток находящейся в органах тканевой, или интерстициальной, жидкости.

Важно, что оттекающая от тканей лимфа по пути к венам проходит через биологи­ческие фильтры — лимфатические узлы. Здесь задерживаются и не попадают в кровоток некоторые чужеродные частицы, например бактерии и т. п. Они поступают из тканей в лимфатические, а не в кровеносные капилляры вследствие более высокой проницаемости стенок первых по сравнению со вторыми.

Состав и свойства лимфы

Лимфа, собираемая из лимфатических протоков во время голодания или после приема нежирной пищи, представляет собой бесцветную, почти прозрачную жидкость, отличающуюся от плазмы крови в 3—4 раза меньшим содержанием белков. Лимфа грудного протока, а также лимфатических сосудов кишечника через 6—8 ч после приема жирной пищи непрозрачна, молочно-белого цвета, так как в ней содержатся эмульгированные жиры, всосавшиеся в кишечнике. Вследствие малого содержания белков вязкость лимфы меньше, а относительная плотность ниже, чем плазмы крови. Реакция лимфы щелочная. В лимфе содержится фибриноген, поэтому она способна свертываться, образуя рыхлый, слегка желтоватый сгусток.

Лимфа, оттекающая от разных органов и тканей, имеет различный состав в зависимости от особенностей их обмена веществ и деятельности. Так, лимфа, оттекающая от печени, содержит больше белков, чем лимфа конечностей. Из лимфатических сосудов желез внутренней секреции оттекает лимфа, содержащая гормоны.

В лимфе обычно нет эритроцитов, а есть очень небольшое количество зернистых лейкоцитов, которые выходят из кровеносных капилляров через их эндотелиальную стенку, а затем из тканевых щелей поступают в лимфатические капилляры. При повреждении кровеносных капилляров, в частности при действии ионизирующей радиации, проницаемость их стенок увеличивается и тогда в лимфе могут появляться эритроциты и зернистые лейкоциты в значительном количестве. В лимфе грудного протока имеется большое число лимфоцитов. Последнее обусловлено тем, что лимфоциты образуются в лимфатических узлах и из них с током лимфы переносятся в кровь.

Образование лимфы

Лимфообразование связано с переходом воды и ряда растворенных в плазме крови веществ из кровеносных капилляров в ткани, а из тканей в лимфатические капилляры.

Стенка кровеносных капилляров представляет собой полупроницаемую мембрану. В ней имеются ультрамикроскопические поры, через которые происходит фильтрация. Величина пор в стенке капилляров разных органов, а следовательно, и проницаемость капилляров неодинаковы. Так, стенка капилляров печени обладает более высокой проницаемостью, чем стенка капилляров скелетных мышц. Именно этим объясняется тот факт, что примерно больше половины лимфы, протекающей через грудной проток, образуется в печени.

Проницаемость кровеносных капилляров может изменяться в различных физиологических условиях, например под влиянием поступления в кровь так называемых капиллярных ядов (гистамин и др.).Вода и растворенные в ней низкомолекулярные вещества: неорганические соли, глюкоза, а также кислород и другие газы, находящиеся в плазме крови, могут легко переходить из крови в ткани через стенку артериального колена капилляра. Давление крови в артериальном колене капилляра, равное примерно 30—35 мм рт. ст., способствует переходу воды из плазмы крови в тканевую жидкость.

74 Сердечные сокращения сопровождаются рядом механических и звуковых проявлений, регистрируя которые, можно получить представление о динамике сокращения сердца. В пятом межреберье слева, на 1 см внутри от среднеключичной линии, в момент сокращения сердца ощущается верхушечный толчок.В период диастолы сердце напоминает эллипсоид, ось которого направлена сверху вниз и справа налево. При сокращении желудочков форма сердца приближается к шару, при этом продольный диаметр сердца уменьшается, а поперечный возрастает. Уплотненный миокард левого желудочка касается внутренней поверхности грудной стенки. Одновременно опущенная к диафрагме при диастоле верхушка сердца в момент систолы приподнимается и ударяется о переднюю стенку грудной клетки. Все это вызывает появление верхушечного толчка.

Для анализа механической активности сердца используют ряд специальных методов.

Кинетокардиография — метод регистрации низкочастотных вибраций грудной клетки, обусловленных механической деятельностью сердца.

Электрокимография является электрической регистрацией движения контура сердечной тени на экране рентгеновского аппарата. К экрану у краев контура сердца в области предсердия, желудочка или аорты прикладывают фотоэлемент, соединенный с осциллографом. При движениях сердца изменяется освещенность фотоэлемента, что регистрируется осциллографом в виде кривой. Так получают кривые сокращения и расслабления отделов сердца.

Баллистокардиография основана на том, что изгнание крови из желудочков и ее движение в крупных сосудах вызывают колебания всего тела, зависящие от явлений реактивной отдачи, подобных тем, которые наблюдаются при выстреле из пушки.

Динамокардиография. Эта методика регистрации механических проявлений сердечной деятельности человека основана на том, что движения сердца в грудной клетке и перемещение крови из сердца в сосуды сопровождаются смещением центра тяжести грудной клетки по отношению к той поверхности, на которой лежит человек.

Эхокардиография — метод исследования механической деятельности и структуры сердца, основанный на регистрации отраженных сигналов импульсного ультразвука. При этом ультразвук в форме высокочастотных посылок (до 2,25—3 мГц) проникает в тело человека, отражается на границе раздела сред с различным ультразвуковым сопротивлением и воспринимается прибором

75. Клапаны сердца открываются и закрываются пассивно вследствие возникновения разности давления крови по обе стороны от клапана. Работа клапанов сопровождается звуковыми явлениями, которые называют тонами сердца, для прослушивания которых применяют стетофонендоскоп. В каждом сердечном цикле сначала слышен более низкий и протяженный I тон и сразу за ним II тон – более высокий и короткий. После этого наступает пауза. Она более длительна, чем пауза между тонами. I тон называют систолическим, поскольку он появляется в начале систолы желудочков. II тон называется диастолическим, так как он появляется в начале диастолы сердца. Детальный анализ тонов сердца возможен при применении метода фонокардиографии, который позволяет различить не слышимые ухом III и IV тоны.

I (систолический) тон возникает в начале систолы желудочков. Начальный низкочастотный и низкоамплитудный компонент I тона связан с сокращением миокарда желудочков. Центральный высокочастотный и высокоамлитудный компонент обусловлен натяжением сухожильных нитей и колебанием створчатых клапанов при их захлопывании. Конечный низкочастотный низкоамлитудный фрагмент I тона соответствует началу периода изгнания и отражает колебания открывающихся полулунных клапанов и начальных отделов аорты и легочного ствола при нагнетании в них крови. Длительность – 0,07-0,13 с. II (диастолический) тон возникает в начале диастолы. Первый высокоамлитудный, аортальный компонент связан с напряжением аортального клапана при его закрытии. Второй, низкоамлитудный, пульмональный(легочный) компонент обусловлен захлопыванием полулунного клапана легочного ствола. Длительность – 0,06-0,1 с. III (тон наполнения, протодиастолический) тон возникает в начале диастолы вследствие вибрации стенок желудочков в фазу их быстрого наполнения; отстоит от начала II тона на 0,11-0,22 с. IV (предсердный) тон обусловлен сокращением миокарда предсердий во время их систолы. Возникает через 0,04-0,06 с после начала зубца P на ЭКГ. I и II тоны называют клапанными; III и IV – мышечными. Наилучшая звучность I тона:1) в пятом межреберье по левой срединной ключичной линии(верхушка сердца), 2) в четвертом-пятом межреберье у правого края грудины. Наилучшая звучность II тона: 1) во втором межреберье у правого края грудины, 2) во втором межреберье у левого края грудины.

Аускультацией называется выслушивание звуковых явлений, возникающих в организме. Обычно эти явления бывают слабыми и для их улавливания пользуются непосредственной и посредственной аускультацией; первой называется выслушивание ухом, а второй — выслушивание при помощи специальных слуховых инструментов — стетоскопа и фонендоскопа. Преимуществом способа посредственной аускультации является его гигиеничность, так как о« предохраняет выслушивающего от возможности заражения, кроме того, он позволяет выслушивать те места тела (например, верхушки легких), которые непосредственно ухом выслушать нельзя. Фонендоскоп или ухо нужно плотно прижимать к телу больного, чтобы исключить возможность присоединения посторонних шумов. Во время выслушивания больной должен быть обнажен до пояса, так как трение фонендоскопа о рубашку создает посторонние шумы. Слишком сухая, морщинистая кожа, а также волосы на теле иногда симулируют хрипы. При сильном сокращении мышц в области исследования также возникают шумы, сходные с неопределенными хрипами. Чаще всего выслушивают легкие (дыхательные шумы, хрипы, шум трения плевры) и сердце (тоны и шумы), иногда кровеносные сосуды и лишь в отдельных случаях желудок и кишечник. К методу аускультации медицинской сестре приходится прибегать при выслушивании кровеносных сосудов для определения артериального давления.

76.В XIX веке стало ясно, что сердце во время своей работы производит некоторое количество электричества. Первые электрокардиограммы были записаны Габриелем Липпманом с использованием ртутного электрометра. Кривые Липпмана имели монофазный характер, лишь отдалённо напоминая современные ЭКГ.

Опыты продолжил Виллем Эйнтховен, сконструировавший прибор (струнный гальванометр), позволявший регистрировать истинную ЭКГ. Он же придумал современное обозначение зубцов ЭКГ и описал некоторые нарушения в работе сердца. В 1924 году ему присудили Нобелевскую премию по медицине.

Первая отечественная книга по электрокардиографии вышла под авторством русского физиолога А. Самойлова в 1909 г.

Электрокардиография (ЭКГ) - является неинвазивным тестом, проведение которого позволяет получать ценную информацию о состоянии сердца. Суть данного метода состоит в регистрации электрических потенциалов, возникающих во время работы сердца и в их графическом отображении на дисплее или бумаге. При возбуждении сердечной мышцы возникающие на ее поверхности электрические потенциалы создают в окружающих тканях динамическое электрическое поле, которое может быть зарегистрировано с поверхности тела. Регистрация биоэлектрических явлений, возникающих при возбуждении сердца, получила название электрокардиографии, а ее графическое выражение, отражающее возникновение, распространение и окончание возбуждения в различных отделах сердца, - электрокардиограммы (ЭКГ). Регистрацию электрокардиограммы производят с помощью электрокардиографа путем различных отведений от поверхности тела. Для записи ЭКГ традиционно используют три стандартный отведения по Эйнтховену: I отведение (правая рука-левая рука), II отведение (правая рука-левая нога), III отведение (левая рука-левая нога). Кроме того, используют дополнительно усиленные отведения по Гольдбергеру (Они регистрируют разность потенциалов между одной из конечностей, на которой установлен активный положительный электрод данного отведения (правая рука, левая рука или левая нога), и средним потенциалом двух других конечностей. Данные отведения обозначаются следующим образом: aVR, aVL, aVF. Обозначения усиленных отведений от конечностей происходят от первых букв английских слов: а - augmented (усиленный), V - voltage (потенциал), R - right (правый), L - left (левый), F - foot (нога)), грудные отведения по Вильсону (V1-V6) и отведения по Небу.

Наклеиваются электроды (10 штук) или используются специальные присоски и манжеты. Снятие ЭКГ занимает 5-10 минут.