
- •1. Предмет фзл.
- •2 История развития фзл
- •3 Общие св-ва живых организмов.
- •5) Методы физиол.Исследований.
- •12)Изменение возбудимости при возбуждении.
- •19)Двигатаьельные единицы
- •22)Отличие мышц
- •1885 Г. - л. Герман - между возбужденными и невозбужденными участками нервного волокна возникают круговые токи.
5) Методы физиол.Исследований.
Метод наблюдения – самый древний, зародился в Др. Греции, хорошо развит был в Египте, на Др. Востоке, в Тибете, в Китае. Суть этого метода заключается в длительном наблюдении изменений функций и состояний организма, фиксирование этих наблюдений и по возможности сопоставление визуальных наблюдений с изменениями организма после вскрытия. В Египте при мумифицировании трупы вскрывались, наблюдения жреца за больным: изменения кожных покровов, глубина и частота дыхания, характер и интенсивность выделений из носа, ротовой полости, а также объем и цвет мочи, ее прозрачность, количество и характер выделяемого кала, его цвет, частота пульса и другие показатели, которые сопоставлялись с изменениями во внутренних органах, фиксировались на папирусе. Таким образом уже по изменению выделяемых организмом кала, мочи, мокроты и т.д. можно было судить о нарушении функций того или иного органа, например, если кал белого цвета допустимо предполагать нарушение функций печени, если кал черного или темного цвета, то возможно предположить желудочного или кишечное кровотечение. Дополнительным критерием служили изменения цвета и тургора кожи, отечность кожи, ее характер, окраска склера, потливость, дрожь и т.д.
Метод эксперимента. Физиологический эксперимент в отличие от простого наблюдения – это целенаправленное вмешательство в текущее отправление организма, рассчитанное на выяснение природы и свойств его функций, их взаимосвязей с другими функциями и с факторами внешней среды. Также вмешательство часто требует хирургической подготовки животного, которое может носить: 1) острую (вивисекционную, от слова vivo – живое, sekcia – секу, т.е. секу по живому), 2) хроническую (экспериментально-хирургическую) формы.
Стереотаксические методы. Это методы, при которых проводятся хирургические операции по вживлению электродов в определенной области мозга в соответствии со стереотаксическим атласом мозга с последующей регистрацией отведенных быстрых и медленных биопотенциалов, с регистрацией вызванных потенциалов, а также регистрацией ЭЭГ, миограммы.
Биохимические методы. Это большая группа методик, с помощью которых в циркулирующих жидкостях, тканях, а иногда и органах, определяют уровень катионов, анионов, неноницированных элементов (макро и микроэлементов), энергетических веществ, ферментов, биологически активных веществ (гормоны и др.). Эти методы применяются как in vivo (в инкубаторах) или в тканях, которые продолжают секретировать и синтезировать вырабатываемые вещества в инкубационную среду.
Методы изучения физиологии ВНД. Психическая работа мозга долго оставалась недоступной для естествознания в целом и для физиологии в частности. Главным образом потому, что о ней судили по ощущениям и впечатлениям, т.е. с помощью субъективных методов. Успех в этой области знаний определился тогда, когда о психической деятельности (ВНД) стали судить с помощью объективного метода условных рефлексов разной сложности выработки. В начале XX века Павловым была разработана и предложена методика выработки условных рефлексов. На основе этой методики возможны дополнительные приемы изучения свойств ВНД и локализации процессов ВНД в головном мозге. Из всех приемов наиболее часто используются следующие приемы:
7) Возбудимые ткани, клетки и ткани, в которых возбуждение сопровождается возникновением потенциала действия , распространяющегося вдоль клеточной мембраны. Таким свойством обладают тела нервных клеток и их отростки — нервные волокна, мышечные волокна или клетки, некоторые вытянутые растительные клетки. Термин «Возбудимые ткани» условен, так как возбудимость (раздражимость) — свойство всех живых клеток, а потенциал действия является компонентом лишь одной из форм возбуждения. Раздражимость (возбудимость) — способность реагировать на внешнее воздействие изменением своих физико-химических и физиологических свойств. Раздражимость проявляется в изменениях текущих значений физиологических параметров, превышающих их сдвиги при покое. Раздражимость является универсальным проявлением жизнедеятельности всех биосистем Различают внешние и внутренние раздражители. Внешние раздражители - разнообразные изменения окружающего мира - световые и звуковые волны, химические и механические изменения, действующие на клетки. Внутренние раздражители - изменение состава и физических свойств жидких сред организма, а также степени наполнения полых органов. Раздражители различают также по виду энергии - химические, физические и биологические, например: механические, температурные, электрические и др. Кроме этого, раздражители различают по силе, длительности и характеру воздействия, по физиологическому значению (адекватные и неадекватные) и другим признакам. Клетки более чувствительны к адекватным раздражителям, к восприятию которых они приспособлены в процессе эволюции (например, свет - адекватный раздражитель для фоторецепторов, недостаток кислорода в артериальной крови - для аортальных и каротидных хеморецепторов).
8) Возбужде́ние
активный физиологический процесс, которым некоторые виды клеток отвечают на внешнее воздействие. Способность клеток к возникновению В. называется возбудимостью. К возбудимым клеткам относятся нервные, мышечные и железистые. Все остальные клетки обладают только раздражимостью, т.е. способностью изменять свои метаболические процессы при действии на них каких-либо факторов (раздражителей).
9)Параметры возбудимости. Порог раздражения (в физиологии нервных и мышечных клеток), наименьшая сила раздражителя (обычно электрического тока), способная вызвать распространяющийся потенциал действия; мера возбудимости клетки. В определённых пределахПорог раздражения находится в обратной зависимости от длительности (t) действия стимула и крутизны нарастания его силы. С увеличением t Порог раздражения падает. Только при некотором критическом увеличении t («полезное время»)Порог раздражения устанавливается на постоянном уровне — реобазе. Минимальное значение t при силе тока, равной 2 реобазам, получило название хронаксии. При данном t величина Порог раздражения одиночной клетки (волокна) зависит как от её «пассивных» свойств (сопротивление и ёмкость мембраны, сопротивление протоплазмы на единицу длины волокна), так и от активных свойств мембраны [состояние системы ионных каналов, в частности их чувствительность кдеполяризации и скорость, с которой они способны активироваться (открываться) в ответ на деполяризацию. Полезное время в физиологии — минимальное время, в течение которого электрический ток пороговой силы должен действовать на ткань, чтобы вызвать ее возбуждение. Лабильность (от лат. labilis — скользящий, неустойчивый) (физиол.) — функциональная подвижность, скорость протекания элементарных циклов возбуждения в нервной и мышечной тканях. Понятие «лабильность» введено русским физиологом Н. Е. Введенским (1886), который считал мерой лабильности наибольшую частоту раздражения ткани, воспроизводимую ею без преобразования ритма. Лабильность отражает время, в течение которого ткань восстанавливает работоспособность после очередного цикла возбуждения. Аккомодация - это приспособление (мембраны) к току с медленной крутизной нарастания, при снижении крутизны до некоторого минимального уровня ("минимальный градиент" или "критический наклон") потенциал действия не возникает.
10) Первый опыт Гальвани
В первом опыте препарат задних конечностей лягушки подвешивался на цинковой стойке с помощью медного крючка. Когда конечность лягушки касалась цинковой стойки, ее мышцы сокращались. Гальвани предположил, что эти сокращения вызваны возникновением в мышцах электрического тока. Однако это предположение было ошибочным. Правильное объяснение этому факту в 1792-1794 гг. дал Алессандро Вольта (A. Volta), доказавший, что сокращение мышц в этом случае вызывается электрическим током, возникающим в месте соприкосновения двух металлов (цинка стойки и меди крючка).
Второй опыт Гальвани (сокращение без металла) состоял в том, что сокращение мышц лапки лягушки воспроизводилось без участия металла путем набрасывания отпрепарированного седалищного нерва на поврежденный участок мышцы голени. Разность потенциалов между наружной поверхностью мышцы и ее внутренней частью, существующая в покое, отчетливо проявляется в случаях, когда мышца повреждена. Потенциал, возникающий между неповрежденным и поврежденным участками, получил название "потенциал повреждения" или "демаркационный потенциал". Когда набрасываемый нерв попадает на поврежденный электроотрицательный участок мышцы, происходит замыкание цепи, в которой роль положительного полюса играют неповрежденная поверхность мышцы и участок соприкасающегося с ней нерва. Таким образом, во втором опыте Гальвани причиной возбуждения нерва является раздражающее действие тока, возникающего непосредственно в тканях.
Вторым опытом Гальвани впервые было доказано существование в тканях «животного электричества», которое возникает между поврежденной и неповрежденными поверхностями. Если эти два участка соединить нервом нервно-мышечного препарата, то возникает ток покоя, которое раздражает нерв и вызывает сокращение мышц.
Для работы необходимо: набор препаровальных инструментов, лоток, пипетка, стеклянный крючок, марлевые салфетки, раствор Рингера, лягушка.
11) Мембранный потенциал (или потенциал покоя) – это разность потенциалов между наружной и внутренней поверхностью мембраны в состоянии относительного физиологического покоя. Потенциал покоя возникает в результате двух причин: 1) неодинакового распределения ионов по обе стороны мембраны. Внутри клетки находится больше всего ионов К, снаружи его мало. Ионов Na и ионов Cl больше снаружи, чем внутри. Такое распределение ионов называется ионной асимметрией; 2) избирательной проницаемости мембраны для ионов. В состоянии покоя мембрана неодинаково проницаема для различных ионов. Клеточная мембрана проницаема для ионов K, малопроницаема для ионов Na и непроницаема для органических веществ.
За счет этих двух факторов создаются условия для движения ионов. Это движение осуществляется без затрат энергии путем пассивного транспорта – диффузией в результате разности концентрации ионов. Ионы K выходят из клетки и увеличивают положительный заряд на наружной поверхности мембраны, ионы Cl пассивно переходят внутрь клетки, что приводит к увеличению положительного заряда на наружной поверхности клетки. Ионы Na накапливаются на наружной поверхности мембраны и увеличивают ее положительный заряд. Органические соединения остаются внутри клетки. В результате такого движения наружная поверхность мембраны заряжается положительно, а внутренняя – отрицательно. Внутренняя поверхность мембраны может не быть абсолютно отрицательно заряженной, но она всегда заряжена отрицательно по отношению к внешней. Такое состояние клеточной мембраны называется состоянием поляризации. В возникновении мембранного потенциала участвуют сила диффузии (разность концентрации ионов) и сила электростатического взаимодействия, поэтому мембранный потенциал называется концентрационно-электрохимическим.
Потенциал действия – это сдвиг мембранного потенциала, возникающий в ткани при действии порогового и сверхпорогового раздражителя, что сопровождается перезарядкой клеточной мембраны.
При действии порогового или сверхпорогового раздражителя изменяется проницаемость клеточной мембраны для ионов в различной степени. Для ионов Na она повышается в 400–500 раз, и градиент нарастает быстро, для ионов К – в 10–15 раз, и градиент развивается медленно. В результате движение ионов Na происходит внутрь клетки, ионы К двигаются из клетки, что приводит к перезарядке клеточной мембраны. Наружная поверхность мембраны несет отрицательный заряд, внутренняя – положительный.
Компоненты потенциала действия:
1) локальный ответ;
2) высоковольтный пиковый потенциал (спайк);
3) следовые колебания:
а) отрицательный следовой потенциал;
б) положительный следовой потенциал.
Локальный ответ.
Пока раздражитель не достиг на начальном этапе 50–75 % от величины порога, проницаемость клеточной мембраны остается неизменой, и электрический сдвиг мембранного потенциала объясняется раздражающим агентом. Достигнув уровня 50–75 %, открываются активационные ворота (m-ворота) Na-каналов, и возникает локальный ответ.
Ионы Na путем простой диффузии поступают в клетку без затрат энергии. Достигнув пороговой силы, мембранный потенциал снижается до критического уровня деполяризации (примерно 50 мВ). Критический уровень деполяризации – это то количество милливольт, на которое должен снизиться мембранный потенциал, чтобы возник лавинообразный ход ионов Na в клетку. Если сила раздражения недостаточна, то локального ответа не происходит.
Высоковольтный пиковый потенциал (спайк).
Пик потенциала действия является постоянным компонентом потенциала действия. Он состоит из двух фаз:
1) восходящей части – фазы деполяризации;
2) нисходящей части – фазы реполяризации.
Лавинообразное поступление ионов Na в клетку приводит к изменению потенциала на клеточной мембране. Чем больше ионов Na войдет в клетку, тем в большей степени деполяризуется мембрана, тем больше откроется активационных ворот. Постепенно заряд с мембраны снимается, а потом возникает с противоположным знаком. Возникновение заряда с противоположным знаком называется инверсией потенциала мембраны. Движение ионов Na внутрь клетки продолжается до момента электрохимического равновесия по иону Na. Амплитуда потенциала действия не зависит от силы раздражителя, она зависит от концентрации ионов Na и от степени проницаемости мембраны к ионам Na. Нисходящая фаза (фаза реполяризации) возвращает заряд мембраны к исходному знаку. При достижении электрохимического равновесия по ионам Na происходит инактивация активационных ворот, снижается проницаемость к ионам Na и возрастает проницаемость к ионам K, натрий-калиевый насос вступает в действие и восстанавливает заряд клеточной мембраны. Полного восстановления мембранного потенциала не происходит.
В процессе восстановительных реакций на клеточной мембране регистрируются следовые потенциалы – положительный и отрицательный. Следовые потенциалы являются непостоянными компонентами потенциала действия. Отрицательный следовой потенциал – следовая деполяризация в результате повышенной проницаемости мембраны к ионам Na, что тормозит процесс реполяризации. Положительный следовой потенциал возникает при гиперполяризации клеточной мембраны в процессе восстановления клеточного заряда за счет выхода ионов калия и работы натрий-калиевого насоса.