
- •Вступ Загальна характеристика дисципліни
- •Робоча програма курсу
- •Змістовий модуль 1 Організація економіко-математичного моделювання
- •Змістовий модуль 2 Лінійне програмування в економічних процесах
- •Змістовий модуль 3 Цілочислове програмування і нелінійні оптимізаційні моделі
- •Змістовий модуль 4 Оцінка і управління ризиком в економіці
- •Змістовий модуль 5 Економетричне моделювання
- •Змістовий модуль 1 Організація економіко-математичного моделювання
- •1.1. Визначення економіко-математичного моделювання. Види моделей. Основні етапи моделювання
- •1.2. Випадкові події і величини, їх числові характеристики
- •1.3. Закони розподілу випадкової величини
- •1.4. Статистичні гіпотези та їх перевірка
- •1.5. Попередня обробка результатів спостережень і техніко-економічної інформації
- •Тема 2. Оптимізаційні економіко-математичні моделі
- •2.1. Сутність економіко-математичних моделей оптимізації
- •2.2. Загальна характеристика задач математичного програмування
- •2.3. Види економіко-математичних моделей оптимізації
- •В основі економіко-математичної моделі розподілу фінансових ресурсів по оптимізації зростання потужностей підприємства є наступна функція:
- •Зиістовий модуль 2 Лінійне програмування в економічних процесах
- •Тема 3. Задача лінійного програмування та методи її розв’язування
- •3.1. Сутність і методи лінійного програмування
- •3.2. Особливості задач лінійного програмування та практичні аспекти їх вирішення
- •3.3. Транспортна задача. Математичне формулювання і алгоритм вирішення
- •Тема 4. Теорія достовірності та аналіз лінійних моделей оптимізаційних задач
- •4.1. Теорія достовірності в економіко-математичному моделюванні
- •4.2. Аналіз лінійних моделей оптимізаційних задач
- •Змістовий модуль 3 Цілочислове програмування і нелінійні оптимізаційні моделі
- •Тема 5. Цілочислове програмування
- •5.1. Основні поняття і сутність цілочислового програмування
- •5.2. Алгоритм розв’язування задач цілочислового програмування
- •5.3. Метод Гомори
- •5.4. Метод віток і меж
- •5.5. Цілочислова транспортна задача
- •5.6. Задача цілочислового лінійного програмування
- •Тема 6. Нелінійні оптимізаційні моделі економічних систем
- •6.1. Сутність нелінійних зв’язків в економічних системах
- •6.2. Методи розробки нелінійних оптимізаційних моделей економічних систем
- •Змістовий модуль 4 Оцінка і управління ризиком в економіці
- •Тема 7. Аналіз та управління ризиком в економіці
- •7.1. Поняття, сутність і зміст невизначеності й ризику
- •7.2. Управління ризиком на підприємстві в сучасних умовах господарювання
- •7.3. Аналіз заходів управління ризиком в економіці
- •Тема 8. Система показників кількісного оцінювання ступеня ризику
- •8.1. Напрями кількісного оцінювання ступеня ризику
- •8.2. Оцінка ризику на основі абсолютних і відносних показників
- •8.3. Допустимий та критичний ризик
- •8.4. Оцінка ризику ліквідності
- •Змістовий модуль 5 Економетричне моделювання
- •Тема 9. Принципи побудови економетричних моделей. Парна лінійна регресія
- •9.1. Принципи побудови економетричних моделей
- •9.2. Оцінка зв’язку між факторами і критерії адекватності економетричної моделі
- •9.3. Сутність мультиколінеарності, напрями її виявлення
- •9.4. Парна лінійна регресія
- •Тема 10. Лінійні моделі множинної регресії
- •10.1. Сутність кількісного регресійного аналізу
- •10.2. Напрями побудови лінійної моделі множинної регресії
- •10.3. Критерії оцінки адекватності лінійної моделі множинної регресії
- •10.4. Економічна інтерпретації лінійних моделей множинної регресії
- •Тема 11. Узагальнені економетричні моделі
- •11.1. Узагальнені економетричні моделі в економіко-математичному моделюванні
- •Види узагальнених економетричних моделей
- •Вибіркова функція регресії для узагальненої лінійної економетричної моделі має наступний вигляд :
- •Тема 12. Економетричні моделі динаміки
- •12.1. Сутність динамічних процесів в економіці
- •12.2. Аналіз часових рядів економічних показників і побудова економетричних моделей динаміки
- •12.3. Авторегресійні моделі в аналізі динаміки економічних процесів і їх прогнозуванні
- •1. Альтернативні прості тест-завдання
- •Альтернативні, побудовані за принципом класифікації і подвійної альтернативи
- •Тест-завдання множинного вибору, побудованих за принципом класифікації
- •5. Тест-завдання множинного вибору, побудовані за принципом циклічності і перестановки:
- •6 . Фасетні тест-завдання, побудовані за принципом циклічності:
- •7 . Фасетні тест-завдання, побудовані за принципом перестановки (відтворення вірної послідовності)
- •Встановіть відповідність у вигляді комбінації цифр і літер:
- •Список використаної літератури
8.2. Оцінка ризику на основі абсолютних і відносних показників
Система кількісних оцінок ризику в абсолютному виразі складається з таких:
у випадку, коли рішення є альтернативним, тобто можливі лише два наслідки його реалізації, показники ризику розраховуються за такою залежністю:
R = Xн х Рн, (8.5)
де Хн – величина збитків у разі настання негативного наслідку рішення;
Рн – ймовірність настання негативного наслідку.
у випадку, якщо рішення мають декілька (безліч) наслідків реалізації, використовують показники:
- математичне сподівання. Математичне сподівання дискреційної величини представляє собою суму добутків можливих варіантів цієї величини на їх імовірність:
М(х)=
,
(8.6)
при чому основною умовою використання цієї формули є:
.
(8.7)
Математичне сподівання для неперервної величини:
М(х)=
(8.8)
- показник дисперсії характеризує ступінь мінливості реальних даних деякої випадкової величини навколо математичного сподівання. Визначається як математичне сподівання квадратів відхилень індивідуальних значень випадкової величини від її математичного сподівання:
σ2=М(х – М(х))2. (8.9)
Для дисперсійної величини формула дисперсії має вигляд:
σ2=
.
(8.10)
Для безперервної величини:
σ2=
.
(8.11)
- середньо квадратичне відхилення:
σ
=
,
(8.12)
σ =
.
(8.13)
Іноді для оцінки величини ризику в абсолютному виразі використовують ймовірність настання небажаних наслідків, тобто величини Р.
Для оцінки ризику при обґрунтуванні управлінських рішень, в більшості випадків, не достатньо використання абсолютних показників. В системі оцінки ризику використовують відносні показники.
У відносному виразі ризик визначається: коефіцієнтом ризику, який визначається як відношення величини максимальних втрат від даного виду діяльності до деякої бази порівнянь (за таку базу може прийматись обсяг власних ресурсів підприємства, загальні величини втрати по даному виду діяльності або сподіваний дохід від даного виду діяльності):
Кр = Х/К, (8.14)
де Х – величина максимально можливих втрат;
К – база порівнянь.
Цей показник, як правило завершує проведення дисперсійного аналізу ризику і використовується при наявності масиву статистичної інформації. При чому, чим більший цей показник, тим більшим є ризик, пов’язаний з даним проектом.