Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
учебное пособие 1 испр.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.98 Mб
Скачать

§ 6. Внутреннее строение кристаллов и основные типы кристаллических решеток.

Весьма тонкие современные методы исследования кристалличе­ского состояния вещества подтвердили, что частицы в кристаллах (атомы, молекулы, ионы) располагаются закономерно, образуя так называемую пространственную решетку кристалла. Внешняя геометрическая форма кристалла теснейшим образом связана с его внутренней структурой. В кристаллической решетке любого тела можно выделить определенную часть, которая носит название элементарной ячейки. Она представляет собой наименьший объем кристаллической решетки вещества, который точно отражает его химический состав и все особенности внутренней структуры дан­ного кристалла.

Во внутреннем строении кристаллов выполняется принцип плотнейшей упаковки частиц, из которых состоит данный кристалл. Под действием сил взаимного притяжения частицы стремятся раз­меститься как можно ближе друг к другу. Поэтому наиболее энергетически выгодно такое взаимное расположение частиц в кристалле, которое отвечает их наиболее плотной упаковке. Про­межутки между ними достигают минимума. При этом могут иметь место два случая.

1.Радиусы частиц, из которых состоит кристалл, равны или очень близки по величине. Этому условию отвечают два типа кри­сталлических решеток: гексагональная (рис. 1.1, а) и гранецентрированная кубическая (рис. 1.1, б). В таких решетках степень заполне­ния объема кристалла частицами составляет 74%. Это максималь­но плотная упаковка частиц одинакового или близких по величине радиусов. Подобный тип решеток свойствен большинству металлов.

2.Радиусы частиц, образующих кристаллы, сильно различаются.

Рис. 1.1 Различные типы кристаллической решетки

Принцип плотнейшей упаковки применим и в этом случае. Частицы более крупных размеров в основном образуют кубическую или гексагональную сетку, а более мелкие частицы занимают сво­бодное пространство между ними. Этот тип решетки характерен для ионных кристаллов, поскольку разные ионы довольно резко отличаются друг от друга по радиусам; например, такова структу­ра кристалла хлорида натрия (рис. 1.1, в).

Следует отметить, что наряду с соотношением размеров частиц на структуру кристалла оказывают известное влияние и поляриза­ционные взаимодействия между ними. С точки зрения структурных элементов и действующих между ними сил различают четыре типа кристаллов: молекулярные, атом­ные, ионные и металлические.

Молекулярная решетка. Молекулярные кристаллы имеют в углах пространственной решетки полярные или неполярные моле­кулы, связанные между собой силами Ван-дер-Ваальса. В качест­ве примера можно указать на твердую двуокись углерода (сухой лед), нафталин, лед. На рис. 1.2 показано строение элементарной ячейки твердого диоксида углерода. Как видим, атомы углерода образуют кубическую решетку с центрированными гранями: атомы кислорода расположены по обе стороны от углерода на отрезках прямых, ориентированных определенным образом относительно ребер элементарной ячейки.

Рис. 1.2 Элементарная ячейка кристалла СО2

Поскольку силы взаимодействия между молекулами сравни­тельно слабы, то и вещества с данным типом решетки обладают малой твердостью, низкими температурами плавления и кипения. Растворы этих веществ, как правило, имеют сравнительно малую электрическую проводимость.

Атомная решетка. В узлах кристал­лических решеток этого типа располо­жены нейтральные атомы, определен­ным образом ориентированные в про­странстве и связанные ковалентными связями. К числу веществ с атомной решеткой относятся, например, крем­ний, графит, алмаз, бор и др. Ковалентная связь, как известно, очень проч­ная, поэтому все связи в кристалле равноценны и очень прочны. Вещества, образованные атомными решетками, имеют большую твердость, высокую температуру плавления, малую раство­римость и малую летучесть. На рис. 1.3 приведены схемы строения атомных решеток алма­за и графита. В силу своеобразия структуры графит имеет очень малую прочность связи по плоскостям спайности кристалла, тогда как алмаз обладает огромной твердостью, поскольку все атомы углерода в его кристаллической решетке расположены друг от друга на одинаковом расстоянии.

Ионная решетка. Ионные кристаллы имеют в узлах пространст­венных решеток положительно и отрицательно заряженные ионы, которые связаны между собой электростатическими силами притя­жения разноименных зарядов. Силы взаимодействия в ионных кри­сталлах весьма значительны, благодаря чему вещества с ионным типом решетки обладают высокой прочностью, высокими темпера­турами плавления и малой летучестью.

Ионные решетки характерны для большинства неорганических соединений (соли, оксиды и другие классы соединений). Многие минералы также имеют ионное строение. Так, кристаллы, имеющие ионную решетку, как правило, хорошо растворимы в воде, а рас­творы их обладают высокой электрической проводимостью. В твер­дом виде ионные кристаллы не проводят электрический ток, так как в них электроны прочно удерживаются в атомных орбиталях отдельных ионов. В расплавленном состоянии кристаллические ве­щества проводят электрический ток, причем проводимость осуще­ствляется за счет переноса ионов. Электрическая проводимость расплавов является характерным свойством любых ионных струк­тур.

Металлическая решетка. Этот тип кристаллических решеток отличается от всех рассмотренных выше типов структур. Согласно современным представлениям, в узлах пространственной решетки типичных металлов в основном находятся положительно заряженные ионы, упакованные по принципу плотнейшей упаковки шаров, а в промежутках между ними находятся электроны в свободном состоянии. Последние образуют своеобразный «электронный газ», который как бы скрепляет одноименно заряженные ионы металла в плотнейшую кристаллическую решетку. Именно наличием свободных электронов объясняется хорошая электриче­ская проводимость и теплопроводность, а также многие химические свойства металлов.

Металлы, как известно, от всех известных природных материа­лов отличаются высокой прочностью наряду с хорошей пластич­ностью как в холодном, так и в горячем состоянии. Высокая тем­пература плавления металлов указывает на значительную проч­ность металлической решетки и также объясняется наличием «электронного газа» в нем.

Под влиянием разности потенциалов электроны в металле начи­нают передвигаться в определенном направлении, что является причиной возникновения электрического тока.

Рис. 1.4 Плоскостные схемы кристаллических решеток различных типов

На рис. 1.4 приведены плоскостные схемы всех рассмотренных типов кристаллических решеток. Однако, принимая такую класси­фикацию кристаллов, всегда нужно иметь в виду, что характер разных связей даже в одном и том же кристалле может быть не одинаковым и классификационные признаки не всегда четко и хо­рошо выражены. Наряду с кристаллами, относящимися к одному из четырех рассмотренных видов связи, существуют кристаллы с различными переходными и смешанными формами связи. Это, на­пример, целиком относится к кристаллогидратам, в которых встре­чаются одновременно ионный тип связи между катионами и анио­нами соли, ковалентная связь между атомами, входящими в состав аниона, а также полярные связи внутри молекул воды и ионодипольная связь молекул с ионами.

Значительный интерес представляют кристаллы, образующие так называемые слоистые решетки, которые характерны для гра­фита, слюд и глинистых минералов.

Глинистые минералы, их строение, свойства и значение в почвоведении.

Почва более чем на девяносто процентов состоит из минеральных компонен­тов и содержит основной запас питательных веществ для растений. Почва являет­ся полидисперсной системой и имеет довольно сложный механический, минера­логический и химический состав. В качестве примера в табл. 1.1 приведен средний химический состав твердой фазы почвы (по А. П. Виноградову).

Как видно из таблицы, почти половина твердой фазы почвы приходится на кислород, одна треть — на кремний, свыше 10% —на алюминий и железо и толь­ко 7% — на все остальные элементы. Из всех перечисленных элементов только азот (а также частично углерод, водород, кислород, фосфор и сера) содержится в органической части почвы. Все остальные элементы приходятся на минераль­ную часть почвы, которая состоит из большого числа различных минералов в виде частиц, имеющих размеры от 10-9 до 10-3 м и более.

Все минералы, содержащиеся в почве, по происхождению подразделяются на первичные и вторичные. Первичные минералы имеют преимущественно магматиче­ское происхождение. Из них наиболее распространены в почвах кварц (окись кремния), полевые шпаты, амфиболы, пироксены и слюды, т. е. минералы, включающие

Таблица 1.1 Средний химический состав твердой фазы почвы

кислородные соединения кремния. Эти минералы составляют основную массу магматических и почвообразующих пород. В почвах первичные минералы обычно присутствуют в виде более или менее крупных частиц размером от 10-3 до 10-6 м, и только очень незначительная часть их имеет более высокую степень дисперсности.

Первичные минералы в условиях земной поверхности неустойчивы и под дей­ствием сил выветривания переходят в более устойчивые соединения — вторичные минералы. Процесс выветривания протекает под влиянием как чисто физических (колебания температуры, ветер, движущая сила воды), так и химических и био­логических факторов. В результате этого из первичных минералов могут образо­ваться вторичные минералы простого состава: гидроксиды железа (II) и (III), алюминия, гидроксид кремния и некоторые другие соединения.

Кроме того, в процессе выветривания образуются также вторичные минералы более сложного строения (алюмо- и феррисиликаты). Эти последние более высо­кодисперсны, чем первичные, и имеют исключительно важное значение в создании основного свойства почвы — ее плодородия.

Все вторичные минералы сложного состава имеют пластинчатое строение и содержат химически связанную воду. Поскольку эти минералы являются важней­шей составной частью различных глин, они получили название глинистых или глинных минералов.

Число глинистых минералов довольно велико, но в почвах наиболее широкое распространение и значение для плодородия имеют в основном три группы мине­ралов: каолинитовая, монтмориллонитовая и гидрослюдистая.

К минералам каолинитовой группы относятся каолинит [Al2Si2O5(OH)4] и галлуазит [Al2Si2O5(OH)4·2H2O], а также некоторые другие минералы. Каолинитовые глины содержат примерно 20—25% илистых частиц (меньше 0,001 мм), из них 5—10% частиц коллоидных размеров (меньше 0,25 микрона). Минералы этой группы довольно часто встречаются во многих типах почв. Они имеют сравни­тельно небольшую набухаемость и липкость.

Из минералов монтмориллонитовой группы в почвах наиболее распростране­ны монтмориллонит [Al2Si4O10(OH)2·nH2O], бейделлит [Al2Si3O9(OH)3·nH2O], нонтронит [Fe2Si4O10(OH)3 ·nН2О] и некоторые другие. Монтмориллонитовые гли­ны обладают в отличие от каолинитовых высокой набухаемостью, липкостью и связностью. Для них весьма характерным признаком является высокая степень дисперсности (до 80% частиц меньше 0,001 мм, из которых 40—45% меньше 0,25 микрона).

Среди глинистых минералов, встречающихся в почвах, большое место принад­лежит минералам группы гидрослюд. В эту группу входят гидромусковит (иллит) {KAl2[(Si, Al)4O10](OH)2·nH2O}, гидробиотит {K(Mg, Fe)3 [(Al, Si)4O10] (OH)2·nH2O} и вермикулит {(Mg, Fe2+, Fe3+)2[(A1, Si)4O10](OH)2 ·4H2O}.

Глинистые минералы различаются по структуре.

Кристаллическая решетка различных глинистых минералов построена из од­них и тех же элементарных структурных единиц, состоящих из атомов кремния и кислорода, а также из атомов алюминия, кислорода и водорода. Кроме перечис­ленных выше элементов в состав глинистых минералов могут входить Fe, Mg, К, Мn и др. В подавляющем большинстве глинистые минералы имеют слоистое строе­ние и относятся к слоистым силикатам. Как показали новейшие рентгенографиче­ские и электронографические исследования, слои глинистых минералов состоят из сочетания кремнекислородных и кислород-гидроксилалюминиевых соединений.

Установлено, что важнейшие физико-химические и водно-физические свойст­ва почвы — емкость поглощения, гидрофильность, связность, липкость, реакция среды и многие другие — находятся в прямой зависимости от минералогического состава. Теперь известно, что доступность для растений тех или иных питатель­ных элементов в значительной мере зависит от вида минералов, содержащихся в почве, и от степени их дисперсности.

Глинистые минералы в основном сосредоточены в илистой (менее 1 мкм) фракции почв. Составом и строением минералов этой фракции в значительной сте­пени определяется поглотительная способность почвы по отношению к катионам и анионам. Чем выше емкость поглощения почвы, тем больший запас питательных элементов в ней сосредоточен, следовательно, лучше ее потенциальное плодоро­дие.

Минералы группы монтмориллонита обладают не только наибольшей степенью дисперсности, но и наибольшей поглотительной способностью (1,0—1,5 мкг-экв/кг). Эти минералы способны сильно набухать и содержат до 30% связанной воды, ко­торая не может усваиваться растениями. Присутствие минералов монтмориллони­товой группы в почвах всегда положительно сказывается на растениях, обеспечи­вает большее содержание в них необходимых питательных элементов. Однако поч­вы, очень богатые монтмориллонитом, имеют невысокую агрономическую ценность. При высыхании таких почв образуются трещины, водопроницаемость их становит­ся неодинаковой, на поверхности образуется прочная корка. Эти отрицательные свойства монтмориллонита особенно сильно проявляются на почвах, бедных гу­мусом. При достаточном количестве гумуса физико-химические свойства такой поч­вы значительно улучшаются за счет образования водопрочных органо-минеральных агрегатов. Практика показывает, что добавление в сильно деградированные песчаные почвы глин, содержащих минералы монтмориллонитовой группы, по­ложительно сказывается на плодородии.

Минералы каолинитовой группы по своим свойствам резко отличаются от монтмориллонита. Каолинит обладает очень малой емкостью поглощения (0,07— 0,10 мкг-экв/кг); он практически не набухает и содержит весьма незначительное количество воды. Почвы, в которых много этого минерала, вследствие малой ем­кости поглощения отличаются низким плодородием. Сам каолинит не содержит поглощенных оснований и поэтому не является источником питания для растений. Почвы, содержащие много каолинита, хорошо отзываются на внесение в них ка­лия и других оснований.

Минералы группы гидрослюд чрезвычайно богаты легкодоступным для расте­ний калием (до 6—7%). Емкость поглощения гидрослюд в несколько раз выше, чем у каолинита, но в два-три раза меньше, чем у монтмориллонита. Почвы, содержащие много гидрослюдистых минералов, практически не нуждаются в калий­ных удобрениях.

В трудах многих ученых отмечается активное участие глинистых минералов в повышении степени доступности фосфатов почвы, калия и микроэлементов. На­личие в почвах полуторных оксидов, а также токсичного для растений подвижно­го алюминия обусловлено составом и строением высокодисперсных (в том числе и глинистых) минералов. Таким образом, качественный и количественный состав вторичных минералов имеет одно из первостепенных значений в создании основно­го свойства почвы — ее плодородия.