
Вопрос №1
Закономерности роста и развития организма человека
Организм человека, как и животных, проходит определенный жизненный цикл – «онтогенез». Онтогенез (от греч. опtоs – сущее, особь; gеnеsis – происхождение, развитие) – процесс индивидуального развития организма с момента зарождения (оплодотворение яйцеклетки) до смерти. Часть онтогенеза протекает внутриутробно, это антенатальный, или преднатальный, онтогенез. Большая часть онтогенеза охватывает период от рождения до смерти. Это постнатальный онтогенез. В течение онтогенеза увеличиваются масса и размеры тела и отдельных органов, т. е. происходит их рост. Наряду с этим происходят качественные изменения, т. е. развитие отдельных физиологических систем и целостного организма. Именно в процессе развития осуществляется постепенная реализация наследственной информации, которая была заложена при оплодотворении. Эти изменения имеют первостепенное значение для формирования организма детей и подростков.
Организм как целое. Организм человека представляет собой сложнейшую систему иерархически (соподчинено) организованных подсистем и систем, объединенных общностью строения и выполняемой функцией. Элементом системы является клетка. В организме человека более 100 триллионов клеток. Клетки представляют собой, в свою очередь, микросистему, отличающуюся сложной структурно-функциональной организацией и многосторонним взаимодействием с другими клетками. Совокупность клеток, сходных по происхождению, строению и функции, образует ткань. Основные типы тканей: эпителиальная, соединительная, костная, мышечная и нервная. Каждая из тканей выполняет определенную функцию и обладает специфическими свойствами. Характерным свойством мышечной ткани является сократимость, нервной ткани – возбудимость и проводимость.
Ткани образуют органы. Органы занимают в теле постоянное положение, имеют особое строение и выполняют определенную функцию. Так, сердце играет роль насоса и обеспечивает поступление крови во все органы и ткани; почки осуществляют выделение конечных продуктов обмена веществ; легкие осуществляют газообмен организма с внешней средой, обеспечивая организм кислородом, и т. д. Орган состоит из нескольких видов тканей, но одна из них всегда преобладает и определяет его главную, ведущую функцию.
Органы, совместно выполняющие определенную функцию, образуют систему органов. Например, слюнные железы, желудок, печень, поджелудочная железа, кишечник объединены в систему пищеварения, сердце и сосуды – в систему кровообращения.
Деятельность всех структур организма, начиная с клетки и кончая системой органов, согласованна и подчинена единому целому. Каждая структурная единица вносит свой вклад в функционирование организма, но организм – не сумма отдельных структур, а единое целое и как целое приобретает свои особые свойства, осуществляет свою жизнедеятельность и взаимодействует со средой.
Единство организма и среды. Функции целостного организма осуществляются только при тесном взаимодействии со средой. Организм реагирует на среду и использует ее факторы для своего существования и развития. Основоположник отечественной физиологии И. М. Сеченов в научное определение организма включал и среду, влияющую на него. Физиология целостного организма изучает не только внутренние механизмы регуляции физиологических процессов, но и механизмы, обеспечивающие взаимодействие и единство организма с окружающей средой.
Гомеостаз и регуляция функций в организме. Все процессы жизнедеятельности организма могут осуществляться только при условии сохранения относительного постоянства внутренней среды организма. К внутренней среде организма относят кровь, лимфу и тканевую жидкость, с которой клетки непосредственно соприкасаются.
Способность сохранять постоянство химического состава и физико-химических свойств внутренней среды называют гомеостазом. Это постоянство поддерживается непрерывной работой систем органов кровообращения, дыхания, пищеварения, выделения и др., выделением в кровь биологически активных химических веществ, обеспечивающих взаимодействие клеток и органов.
В организме непрерывно происходят процессы саморегуляции физиологических функций, создающие необходимые для существования организма условия.
Саморегуляция – свойство биологических систем устанавливать и поддерживать на определенном, относительно постоянном уровне те или иные физиологические или другие биологические показатели.
С помощью механизма саморегуляции у человека поддерживается относительно постоянный уровень кровяного давления, температуры тела, физико-химических свойств крови и др. Одним из условий саморегуляции является обратная связь между регулируемым процессом и регулирующей системой, поступление информации о конечном эффекте в центральные регулирующие аппараты.
Гуморальная (лат. humor—жидкость) регуляция – один из механизмов координации процессов жизнедеятельности в организме, осуществляемой через жидкие среды организма (кровь, лимфу, тканевую жидкость) с помощью биологически активных веществ, выделяемых клетками, тканями и органами. Этот тип регуляции является наиболее древним. В процессе эволюции по мере развития и усложнения организма в осуществлении взаимосвязи между отдельными его частями и в обеспечении всей его деятельности первостепенную роль начинает играть нервная регуляция, которая осуществляется нервной системой.
Нервная система объединяет и связывает все клетки и органы в единое целое, изменяет и регулирует их деятельность, осуществляет связь организма с окружающей средой. Центральная нервная система и ее ведущий отдел – кора больших полушарий головного мозга, весьма тонко и точно воспринимая изменения окружающей среды, а также внутреннего состояния организма, своей деятельностью обеспечивают развитие и приспособление организма к постоянно меняющимся условиям существования. Нервный механизм регуляции более совершенен.
Нервный и гуморальный механизмы регуляции взаимосвязаны. Активные химические вещества, образующиеся в организме, способны оказывать свое воздействие и на нервные клетки, изменяя их функциональное состояние. Образование и поступление в кровь многих активных химических веществ находится, в свою очередь, под регулирующим влиянием нервной системы. В этой связи правильнее говорить о единой нервно-гуморальной системе регуляции функций организма, создающей условия для взаимодействия отдельных частей организма, связывающей их в единое целое и обеспечивающей взаимодействие организма и среды.
Понятие роста и развития. Процессы роста и развития являются общебиологическими свойствами живой материи. Рост и развитие человека, начинающиеся с момента оплодотворения яйцеклетки, представляют собой непрерывный поступательный процесс, протекающий в течение всей его жизни. Процесс развития протекает скачкообразно, и разница между отдельными этапами, или периодами жизни, сводится не только к количественным, но и к качественным изменениям.
Наличие возрастных особенностей в строении или деятельности тех или иных физиологических систем ни в коей мере не может являться свидетельством неполноценности организма ребенка на отдельных возрастных этапах. Именно комплексом подобных особенностей характеризуется тот или другой возраст.
Под развитием в широком смысле слова следует понимать процесс количественных и качественных изменений, происходящих в организме человека, приводящих к повышению уровней сложности организации и взаимодействия всех его систем. Развитие включает в себя три основных фактора: рост, дифференцировку органов и тканей, формообразование (приобретение организмом характерных, присущих ему форм). Они находятся между собой в тесной взаимосвязи и взаимозависимости.
Одной из основных физиологических особенностей процесса развития, отличающей организм ребенка от организма взрослого, является рост, т. е. количественный процесс, характеризующийся непрерывным увеличением массы организма и сопровождающийся изменением числа его клеток или их размеров.
В процессе роста увеличиваются число клеток, телесная масса и антропометрические показатели. В одних органах и тканях, таких, как кости, легкие, рост осуществляется преимущественно за счет увеличения числа клеток, в других (мышцы, нервная ткань) преобладают процессы увеличения размеров самих клеток. Такое определение процесса роста исключает те изменения массы и размеров тела, которые могут быть обусловлены жироотложением или задержкой воды. Более точный показатель роста организма – это повышение в нем общего количества белка и увеличение размеров костей.
Закономерности онтогенетического развития. К важным закономерностям роста и развития детей относятся неравномерность и непрерывность роста и развития, гетерохрония и явления опережающего созревания жизненно важных функциональных систем.
И. А. Аршавский сформулировал «энергетическое правило скелетных мышц» в качестве основного фактора, позволяющего понять не только специфические особенности физиологических функций организма в различные возрастные периоды, но и закономерности индивидуального развития. Согласно его данным, особенности энергетических процессов в различные возрастные периоды, а также изменение и преобразование деятельности дыхательной и сердечно-сосудистой систем в процессе онтогенеза находятся в зависимости от соответствующего развития скелетной мускулатуры. А. А. Маркосян к общим законам индивидуального развития отнес и надежность биологической системы.
Под надежностью биологической системы принято понимать такой уровень регулирования процессов в организме, когда обеспечивается их оптимальное протекание с экстренной мобилизацией резервных возможностей и взаимозаменяемостью, гарантирующей приспособление к новым условиям, и с быстрым возвратом к исходному состоянию. Согласно этой концепции, весь путь развития от зачатия до естественного конца проходит при наличии запаса жизненных возможностей. Эти резервные возможности обеспечивают развитие и оптимальное течение жизненных процессов при меняющихся условиях внешней среды.
П. К. Анохин выдвинул учение о гетерохронии (неравномерное созревание функциональных систем) и, вытекающее из него, – учение о системогенезе. Согласно его представлениям, под функциональной системой следует понимать широкое функциональное объединение различно локализованных структур на основе получения конечного приспособительного эффекта, необходимого в данный момент (например, функциональная система акта сосания, функциональная система, обеспечивающая передвижение тела в пространстве, и др.).
Функциональные системы созревают неравномерно, включаются поэтапно, сменяются, обеспечивая организму приспособление в различные периоды онтогенетического развития.
Системогенез как общая закономерность развития особенно четко выявляется на стадии эмбрионального развития. Однако гетерохронное созревание, поэтапное включение и смена функциональных систем характерны и для других этапов индивидуального развития.
Вопрос№2
Ткани, их строение и функции
Организм человека — сложная целостная саморегулирующаяся и самовозобновляющаяся система, состоящая из огромного количества клеток. На уровне клеток происходят все важнейшие процессы; обмен веществ, рост, развитие и размножение. Клетки и неклеточные структуры объединяются в ткани, органы, системы органов и целостный организм.
Ткани— это совокупность клеток и неклеточных структур (неклеточных веществ), сходных по происхождению, строению и выполняемым функциям. Выделяют четыре основные группы тканей: эпителиальные, мышечные, соединительные и нервную.
Эпителиальные ткани являются пограничными, так как покрывают организм снаружи и выстилают изнутри полые органы и стенки полостей тела. Особый вид эпителиальной ткани —железистый эпителий — образует большинство желез (щитовидную, потовые, печень и др.), клетки которых вырабатывают тот или иной секрет. Эпителиальные ткани имеют следующие особенности: их клетки тесно прилегают друг к другу, образуя пласт, межклеточного вещества очень мало; клетки обладают способностью к восстановлению (регенерации).
Эпителиальные клетки по форме могут быть плоскими, цилиндрическими, кубическими. По количеству пластов эпителии бывают однослойные и многослойные. Примеры эпителиев: однослойный плоский выстилает грудную и брюшную полости тела; многослойный плоский образует наружный слой кожи (эпидермис); однослойный цилиндрический выстилает большую часть кишечного тракта; многослойный цилиндрический — полость верхних дыхательных путей); однослойный кубический образует канальцы нефронов почек. Функции эпителиальных тканей; защитная, секреторная, всасывания.
Мышечные ткани обусловливают все виды двигательных процессов внутри организма, а также перемещение организма и его частей в пространстве. Это обеспечивается за счет особых свойств мышечных клеток — возбудимости и сократимости. Во всех клетках мышечных тканей содержатся тончайшие сократительные волоконца — миофибриллы, образованные линейными молекулами белков — актином и миозином. При скольжении их относительно друг друга происходит изменение длины мышечных клеток.
Различают три вида мышечной ткани: поперечнополосатую, гладкую и сердечную (рис. 12.1). Поперечнополосатая (скелетная) мышечная ткань построена из множества многоядерных волокноподобных клеток длиной 1—12 см. Наличие миофибрилл со светлыми и темными участками, по-разному преломляющих свет (при рассмотрении их под микроскопом), придает клетке характерную поперечную исчерченность, что и определило название этого вида ткани. Из нее построены все скелетные мышцы, мышцы языка, стенок ротовой полости, глотки, гортани, верхней части пищевода, мимические, диафрагма. Особенности поперечнополосатой мышечной ткани: быстрота и произвольность (т. е. зависимость сокращении от воли, желания человека), потребление большого количества энергии и кислорода, быстрая утомляемость.
Рис. 12.1. Виды мышечной ткани: а — поперечнополосатая; 6 — сердечная; в — гладкая.
Сердечная ткань состоит из поперечно исчерченных одноядерных мышечных клеток, но обладает иными свойствами. Клетки расположены не параллельным пучком, как скелетные, а ветвятся, образуя единую сеть. Благодаря множеству клеточных контактов поступающий нервный импульс передается от одной клетки к другой, обеспечивая одновременное сокращение, а затем расслабление сердечной мышцы, что позволяет ей выполнять насосную функцию.
Клетки гладкой мышечной ткани не имеют поперечной ис-черченности, они веретеновидные, одноядерные, их длина около 0,1 мм. Этот вид ткани участвует в образовании стенок трубко-образных внутренних органов и сосудов (пищеварительного тракта, матки, мочевого пузыря, кровеносных и лимфатических сосудов). Особенности гладкой мышечной ткани: непроизвольность и небольшая сила сокращений, способность к длительному тоническому сокращению, меньшая утомляемость, небольшая потребность в энергии и кислороде.
Соединительные ткани (ткани внутренней среды) объединяют группы тканей мезодермального происхождения, очень различных по строению и выполняемым функциям. Виды соединительной ткани: костная, хрящевая, подкожная жировая клетчатка, связки, сухожилия, кровь, лимфа и др. Общей характерной чертой строения этих тканей является рыхлое расположение клеток, отделенных друг от друга хорошо выраженным межклеточным веществом, которое образовано различными волокнами белковой природы (коллагеновыми, эластическими) и основным аморфным веществом.
У каждого вида соединительной ткани особое строение межклеточного вещества, а следовательно, и разные обусловленные им функции. Например, в межклеточном веществе костной ткани располагаются кристаллы солей (преимущественно соли кальция), которые и придают костной ткани особую прочность. Поэтому костная ткань выполняет защитную и опорную функции.
Кровь— разновидность соединительной ткани, у которой межклеточное вещество жидкое (плазма), благодаря чему одной из основных функций крови является транспортная (переносит газы, питательные вещества, гормоны, конечные продукты жизнедеятельности клеток и др.).
Межклеточное вещество рыхлой волокнистой соединительной ткани, находящейся в прослойках между органами, а также соединяющей кожу с мышцами, состоит из аморфного вещества и свободно расположенных в разных направлениях эластических волокон. Благодаря такому строению межклеточного вещества кожа подвижна. Эта ткань выполняет опорную, защитную и питательную функции.
Нервная ткань, из которой построены головной и спинной мозг, нервные узлы и сплетения, периферические нервы, выполняет функции восприятия, переработки, хранения и передачи ин-
формации, поступающей как из окружающей среды, так и от органов самого организма. Деятельность нервной системы обеспечивает реакции организма на различные раздражители, регуляцию и координацию работы всех его органов.
Основными свойствами нервных клеток —нейронов, образующих нервную ткань, являются возбудимость и проводимость. Возбудимость — это способность нервной ткани в ответ на раздражение приходить в состояние возбуждения, а проводимость — способность передавать возбуждение в форме нервного импульса другой клетке (нервной, мышечной, железистой). Благодаря этим свойствам нервной ткани осуществляется восприятие, проведение и формирование ответной реакции организма на действие внешних и внутренних раздражителей.
Нервная клетка, или нейрон, состоит из тела и отростков двух видов (рис. 12.2). Тело нейрона представлено ядром и окружающей его областью цитоплазмы. Это метаболический центр нервной клетки; при его разрушении она погибает. Тела нейронов располагаются преимущественно в головном и спинном мозге, т. е. в центральной нервной системе (ЦНС), где их скопления образуют серое вещество мозга. Скопления тел нервных клеток за пределами ЦНС формируют нервные узлы, или ганглии.
Короткие, древовидно ветвящиеся отростки, отходящие от тела нейрона, называются дендритами. Они выполняют функции восприятия раздражения и передачи возбуждения в тело нейрона.
Рис. 12.2. Строение нейрона: 1 — дендриты; 2 — тело клетки; 3 — ядро; 4 — аксон; 5 — миелиновая оболочка; б — ветви аксона; 7 — перехват; 8 — неврилемма.
Самый мощный и длинный (до 1 м) неветвящийся отросток называется аксоном, или нервным волокном. Его функция состоит в проведении возбуждения от тела нервной клетки к концу аксона. Он покрыт особой белой липидной оболочкой (миелином), выполняющей роль защиты, питания и изоляции нервных волокон друг от друга. Скопления аксонов в ЦНС образуют белое вещество мозга. Сотни и тысячи нервных волокон, выходящих за пределы ЦНС, при помощи соединительной ткани объединяются в пучки — нервы, дающие многочисленные ответвления ко всем органам.
От концов аксонов отходят боковые ветви, заканчивающиеся расширениями — аксоппыми окончаниями, или терминалями. Это зона контакта с другими нервными, мышечными или железистыми метками. Она называется синапсом, функцией которого является передача возбуждения. Один нейрон через свои синапсы может соединяться с сотнями других клеток.
По выполняемым функциям различают нейроны трех видов. Чувствительные (центростремительные) нейроны воспринимают раздражение от рецепторов, возбуждающихся под действием раздражителей из внешней среды или из самого организма человека, и в форме нервного импульса передают возбуждение с периферии в ЦНС.Двигательные (центробежные) нейроны посылают нервный сигнал из ЦНС мышцам, железам, т. е. на периферию. Нервные клетки, воспринимающие возбуждение от других нейронов и передающие его также нервным клеткам, — это вставочные нейроны, или интернейроны. Они располагаются в ЦНС. Нервы, в состав которых входят как чувствительные, так и двигательные волокна, называются смешанными.
Вопрос №3
Введение
Организм человека - единое целое. Человек с его сложным анатомическим строением, физиологическими и психическими особенностями представляет собой высший этап эволюции органического мира. Характерным для всякого организма является определенная организация его структур. В процессе эволюции многоклеточных организмов произошла дифференциация клеток: появились клетки различных размеров, формы, строения и функций. Из одинаково дифференцированных клеток образуются ткани, характерное свойство которых - структурное объединение, морфологическая и функциональная общность и взаимодействие клеток. Различные ткани специализированы по функциям. Так, характерным свойством мышечной ткани является сократимость; нервной ткани - передача возбуждения и т.д. Несколько тканей, объединенных в определенный комплекс, образуют орган (почка, глаз, желудок и т.п.).
Нельзя представить себе организм человека как набор отдельных органов, выполняющих свои собственные функции и не подвергающихся влиянию соседних. Наш организм представляет собой единое целое, составные части которого являют наиболее совершенное и гармоничное создание из всех тех, которые только могла создать природа. Все органы и их назначения взаимосвязаны. Организм - биологическая система, состоящая из взаимосвязанных и соподчинённых элементов, взаимоотношения которых и особенности их строения подчинены их функционированию как единого целого. Организм человека состоит из систем органов, которые взаимодействуют между собой. Каждый орган осуществляет свою функцию. Поэтому от правильного функционирования всех органов во многом зависит жизнедеятельность всего организма. Однако многие сложные процессы, такие, как дыхание, выделение и др., одним органом выполнены быть не могут. Их осуществляет система органов.
1. Система органов человека
Орган представляет собой часть тела, которая занимает в нем постоянное положение, имеет определенное строение и форму и выполняет одну или несколько функций. Орган состоит из нескольких видов тканей, но одна из них всегда преобладает и определяет его главную, ведущую функцию. В состав скелетной мышцы, например, входит поперечнополосатая мышечная и рыхлая соединительная ткань. В ней имеются кровеносные и лимфатические сосуды и нервы.
Органы представляют собой рабочие аппараты организма, специализированные на выполнении сложных видов деятельности, необходимых для существования целостного организма. Сердце, например, выполняет функцию насоса, перекачивающего кровь из вен в артерии; почки - функцию выделения из организма конечных продуктов обмена веществ; костный мозг - функцию кроветворения и т.д. Органы образовались в процессе эволюции животного мира. Орган - это исторически сложившаяся система различных тканей, объединенных общей для данного органа основной функцией, структурой и развитием.
В теле человека имеется много органов, но каждый из них является частью целостного организма. Несколько органов, совместно выполняющих определенную функцию, образуют систему органов. Система органов - это анатомические и функциональные объединения нескольких органов, участвующих в выполнении какого-либо сложного акта деятельности.
Все системы органов находятся в сложном взаимодействии друг с другом и составляют в анатомическом и функциональном отношении единое целое - организм.
Нередко две или несколько систем органов объединяют в понятие аппарат. Но, обладая сложной организацией, живой организм представляет собой единое целое, в котором деятельность всех его структур - клеток, тканей, органов и их систем - согласована и подчинена этому целому.
В анатомической и функциональной связи между всеми системами органов человека проявляется целостность организма. Живой организм, состоящий из множества органов, существует как единое целое.
1. Система органов движения обеспечивает передвижение организма в пространстве и участвует в образовании полостей тела (грудной, брюшной), в которых располагаются внутренние органы. Эта система образует также полости, в которых находятся головной и спинной мозг.
2. Система органов пищеварения осуществляет механическую и химическую переработку поступающей в организм пищи, а также всасывание во внутреннюю среду организма питательных веществ. Эта система выводит из организма оставшиеся неусвоенными вещества в окружающую среду.
Пищеварительный аппарат человека представлен пищеварительной трубкой, крупными железами пищеварительного тракта (слюнные железы, поджелудочная железа, печень), а также множеством мелких желез, залегающих в слизистой оболочке всех отделов пищеварительного тракта. Общая длина пищеварительного тракта от полости рта до заднего прохода составляет 8-10 м. По большей части он представляет собой изогнутую в виде петель трубку и состоит из переходящих одна в другую частей: полости рта, глотки, пищевода, желудка, тонкой, толстой и прямой кишки.
Чтобы произошло переваривание пищи, сначала необходимо ее разжевать и проглотить. Затем пища попадает в желудок и кишечник, где выделяются пищеварительные соки. Только слаженная работа всех органов пищеварения дает возможность полностью переварить пищу. Каждый орган в данном случае выполняет часть сложного процесса, а все вместе они осуществляют пищеварение. Значит и между отделами одной системы органов существует физиологическая зависимость.
Для нормальной работы пищеварительной системы требуется поступление к клеткам ее органов питательных веществ, кислорода. Из клеток должны удаляться углекислый газ и другие вредные вещества. Иначе говоря, система органов пищеварения теснейшим образом связана физВведение
Организм человека - единое целое. Человек с его сложным анатомическим строением, физиологическими и психическими особенностями представляет собой высший этап эволюции органического мира. Характерным для всякого организма является определенная организация его структур. В процессе эволюции многоклеточных организмов произошла дифференциация клеток: появились клетки различных размеров, формы, строения и функций. Из одинаково дифференцированных клеток образуются ткани, характерное свойство которых - структурное объединение, морфологическая и функциональная общность и взаимодействие клеток. Различные ткани специализированы по функциям. Так, характерным свойством мышечной ткани является сократимость; нервной ткани - передача возбуждения и т.д. Несколько тканей, объединенных в определенный комплекс, образуют орган (почка, глаз, желудок и т.п.).
Нельзя представить себе организм человека как набор отдельных органов, выполняющих свои собственные функции и не подвергающихся влиянию соседних. Наш организм представляет собой единое целое, составные части которого являют наиболее совершенное и гармоничное создание из всех тех, которые только могла создать природа. Все органы и их назначения взаимосвязаны. Организм - биологическая система, состоящая из взаимосвязанных и соподчинённых элементов, взаимоотношения которых и особенности их строения подчинены их функционированию как единого целого. Организм человека состоит из систем органов, которые взаимодействуют между собой. Каждый орган осуществляет свою функцию. Поэтому от правильного функционирования всех органов во многом зависит жизнедеятельность всего организма. Однако многие сложные процессы, такие, как дыхание, выделение и др., одним органом выполнены быть не могут. Их осуществляет система органов.
1. Система органов человека
Орган представляет собой часть тела, которая занимает в нем постоянное положение, имеет определенное строение и форму и выполняет одну или несколько функций. Орган состоит из нескольких видов тканей, но одна из них всегда преобладает и определяет его главную, ведущую функцию. В состав скелетной мышцы, например, входит поперечнополосатая мышечная и рыхлая соединительная ткань. В ней имеются кровеносные и лимфатические сосуды и нервы.
Органы представляют собой рабочие аппараты организма, специализированные на выполнении сложных видов деятельности, необходимых для существования целостного организма. Сердце, например, выполняет функцию насоса, перекачивающего кровь из вен в артерии; почки - функцию выделения из организма конечных продуктов обмена веществ; костный мозг - функцию кроветворения и т.д. Органы образовались в процессе эволюции животного мира. Орган - это исторически сложившаяся система различных тканей, объединенных общей для данного органа основной функцией, структурой и развитием.
В теле человека имеется много органов, но каждый из них является частью целостного организма. Несколько органов, совместно выполняющих определенную функцию, образуют систему органов. Система органов - это анатомические и функциональные объединения нескольких органов, участвующих в выполнении какого-либо сложного акта деятельности.
Все системы органов находятся в сложном взаимодействии друг с другом и составляют в анатомическом и функциональном отношении единое целое - организм.
Нередко две или несколько систем органов объединяют в понятие аппарат. Но, обладая сложной организацией, живой организм представляет собой единое целое, в котором деятельность всех его структур - клеток, тканей, органов и их систем - согласована и подчинена этому целому.
В анатомической и функциональной связи между всеми системами органов человека проявляется целостность организма. Живой организм, состоящий из множества органов, существует как единое целое.
1. Система органов движения обеспечивает передвижение организма в пространстве и участвует в образовании полостей тела (грудной, брюшной), в которых располагаются внутренние органы. Эта система образует также полости, в которых находятся головной и спинной мозг.
2. Система органов пищеварения осуществляет механическую и химическую переработку поступающей в организм пищи, а также всасывание во внутреннюю среду организма питательных веществ. Эта система выводит из организма оставшиеся неусвоенными вещества в окружающую среду.
Пищеварительный аппарат человека представлен пищеварительной трубкой, крупными железами пищеварительного тракта (слюнные железы, поджелудочная железа, печень), а также множеством мелких желез, залегающих в слизистой оболочке всех отделов пищеварительного тракта. Общая длина пищеварительного тракта от полости рта до заднего прохода составляет 8-10 м. По большей части он представляет собой изогнутую в виде петель трубку и состоит из переходящих одна в другую частей: полости рта, глотки, пищевода, желудка, тонкой, толстой и прямой кишки.
Чтобы произошло переваривание пищи, сначала необходимо ее разжевать и проглотить. Затем пища попадает в желудок и кишечник, где выделяются пищеварительные соки. Только слаженная работа всех органов пищеварения дает возможность полностью переварить пищу. Каждый орган в данном случае выполняет часть сложного процесса, а все вместе они осуществляют пищеварение. Значит и между отделами одной системы органов существует физиологическая зависимость.
Для нормальной работы пищеварительной системы требуется поступление к клеткам ее органов питательных веществ, кислорода. Из клеток должны удаляться углекислый газ и другие вредные вещества. Иначе говоря, система органов пищеварения теснейшим образом связана физиологически с системой органов кровообращения, дыхания, выделения и др.
3. Система органов дыхания обеспечивает газовый обмен, т.е. доставку кислорода из внешней среды в кровь и выведение из организма углекислого газа, одного из конечных продуктов обмена веществ, а также принимает участие в обонянии, голосообразовании, водно-солевом и липидном обмене, вырабатывании некоторых гормонов.
В дыхательном аппарате легкие выполняют газообменную функцию, а полость носа, носоглотка, гортань, трахея и бронхи -- воздухопроводящую. Попадая в воздухоносные пути, воздух согревается, очищается и увлажняется. Кроме того, здесь же происходит восприятие температурных, механических и обонятельных раздражений.
4. Система мочевых органов выводит из крови и организма продукты обмена веществ (мочевину и др.). Мочеобразующие органы, которые также называются органами выделения, очищают организм от шлаков (солей, мочевины и др.), образующихся в результате обмена веществ.
5. Систему половых органов поддерживает жизнь вида, т.е. несет специальную функцию размножения. Половые органы подразделяются на наружные и внутренние. Внутренние мужские половые органы образуют яички, придатки, семенные пузырьки, семявыносящие протоки, предстательная и бульбоуретральные железы. Наружными мужскими половыми органами являются мошонка и половой член.
К внутренним женским половым органам относятся яичники, матка, маточные трубы, влагалище, а к наружным -- большие и малые половые губы, клитор, луковицы преддверия влагалища и большие железы преддверия. Наружные женские половые органы располагаются в переднем отделе промежности, в области мочеполового треугольника.
6. Сердечно-сосудистая система, состоящая из кровеносной и лимфатической систем, доставляет питательные вещества и кислород к органам и тканям, удаляет из них продукты обмена веществ, а также обеспечивает транспортировку этих продуктов к выделительным органам (почкам, коже), а углекислого газа - к легким. Кроме того, продукты жизнедеятельности эндокринных органов (гормоны) также разносятся с помощью кровеносных сосудов по всему организму, чем обеспечивается влияние гормонов на деятельность отдельных частей и организма в целом.
7. Система органов внутренней секреции осуществляет при помощи гормонов регуляцию жизнедеятельности организма.
8.Система органов размножения -- это семенники у мужчин, яичники и матка -- у женщин. Система органов размножения обеспечивает воспроизведение потомства.
9. Нервная система объединяет все части организма в единое целое и уравновешивает его деятельность соответственно меняющимся условиям внешней среды. Будучи теснейшим образом связана с эндокринными органами, она обеспечивает совместно с последней нейрогуморальную регуляцию жизнедеятельности отдельных частей и организма в целом. Нервная система (кора полушарий головного мозга) является материальным субстратом психической деятельности человека, а также составляет важнейшую часть органов чувств.
Единая нервная система условно подразделяется на два больших отдела -- соматическую нервную систему и вегетативную нервную систему. Соматическая нервная система ("сома" -- тело) преимущественно осуществляет связь организма с окружающей средой, обусловливая чувствительность (с помощью чувствительных нервных окончаний и органов чувств) и движения тела, управляя скелетной мускулатурой.
Так как передвижение в пространстве и чувствительность свойственны животным организмам (это и отличает их от растений), соматическая часть нервной системы получила также название анимальной ("анималь" -- животное).
Вегетативная нервная система названа так потому, что она оказывает влияние на "внутреннее хозяйство" организма: обмен веществ, кровообращение, выделение, размножение, т. е. на процессы так наз. растительной жизни ("вегетатио" -- растительность).
Таким образом, организм человека, его единое целое, составляют несколько уровней организации по возрастанию, а именно: молекулярный уровень, клеточный уровень, тканевой уровень, органный уровень, системно-органный уровень и организменный уровень. Причем единицей считается клетка, а более высокие уровни за счет сложного взаимодействия осуществляют существование организма.
Органы и системы организма находятся между собой в столь тесной связи и взаимозависимости, что патологические изменения в одном из них не могут не отразиться на других, что приводит к нарушению нормальной жизнедеятельности организма в целом.
Даже незначительные изменения, не говоря уже о постоянном влиянии патогенных факторов окружающей среды, приводят к ухудшению общего состояния, возникновению дисфункции различных органов и как итог - к болезни. И не одного только органа, а всего организма.
Еще в 30-е годы XX века известный отечественный терапевт Д. Д. Плетнев утверждал, что "врач имеет дело не с органопатологией, то есть не с болезнью какого-либо органа, а с атропологией, то есть болезнью человека". Современная медицина, теоретически провозглашая данное утверждение, на практике его игнорирует.
Современная наука рассматривает организм человека как единое целое, в котором все органы и системы находятся в тесной связи между собой, а их функции регулируются и направляются центральной нервной системой. В силу этого воздействие физических упражнений на мышечную систему оказывает также влияние на сердечно-сосудистую, дыхательную, нервную систему, на пищеварение, обмен веществ, выделение и т. д., иначе говоря, на весь организм.
Установление учеными того факта, что вокруг тела человека существует фиксированное энергетическое поле, влияющее на его физическую структуру, убедительно доказывает существование организма как единого целого.
2. Управление в живых организмах
Организм как единое целое может существовать только при условии, когда составляющие его органы и ткани функционируют с такой интенсивностью и в таком объеме, которые обеспечивают адекватное уравновешивание со средой обитания. По словам И. П. Павлова, живой организм -- сложная обособленная система, внутренние силы которой постоянно авновешиваются с внешними силами окружающей среды. В основе уравновешивания лежат процессы регуляции, управления физиологическими функциями.
И. П. Павлов в своем учении о высшей нервной деятельности человека и животных убедительно показал, что взаимодействие и взаимозависимость внутренних и внешних проявлений жизнедеятельности организма координирует центральная нервная система. Он установил, что в организме нет ни одного органа и функции, которые не находились бы в той или иной мере под контролем центральной нервной системы.
Организм человека постоянно связан с внешней средой, из которой он получает питательные вещества, кислород и одновременно выделяет в нее отработанные продукты жизнедеятельности. На организм воздействуют все изменения внешней среды -- колебания температуры, движение и влажность воздуха, солнечная инсоляция и т.д. Связь и активное приспособление организма к окружающей его внешней среде обеспечиваются корой больших полушарий головного мозга, которая одновременно является высшим регулятором всей деятельности организма.
Целостность организма выражается и в том, что при заболевании и травме страдают не только больные, поврежденные органы или части тела, но всегда проявляется и общая реакция организма. Это выражается в изменении функций нервных клеток и нервных центров, что ведет к поступлению в кровь необходимых гормонов, витаминов, солей и других веществ, участвующих в регулировании жизнедеятельности организма. В результате повышаются его энергетические и защитные возможности. Это помогает преодолевать возникшие нарушения, способствует их компенсации или восстановлению.
Управление, или регуляция, в живых организмах представляет собой совокупность процессов, обеспечивающих необходимые режимы функционирования, достижение определенных целей или полезных для организма приспособительных результатов. Управление возможно при наличии взаимосвязи органов и систем организма. Процессы регуляции охватывают все уровни организации системы: молекулярный, субклеточный, клеточный, органный, системный, организменный, надорганизменный (популяционный, экосистемный, биосферный).
Способы управления в организме. Основные способы управления в живом организме предусматривают запуск (инициацию), коррекцию и координацию физиологических процессов.
Запуск представляет собой процесс управления, вызывающий переход функции органа от состояния относительного покоя к деятельному состоянию или от активной деятельности к состоянию покоя. Например, при определенных условиях центральная нервная система инициирует работу пищеварительных желез, фазные сокращения скелетной мускулатуры, процессы мочевыведения, дефекации и др.
Коррекция позволяет управлять деятельностью органа, осуществляющего физиологическую функцию в автоматическом режиме или инициированную поступлением управляющих сигналов. Примером может служить коррекция работы сердца центральной нервной системой посредством влияний, передаваемых по блуждающим и симпатическим нервам.
Координация предусматривает согласование работы нескольких органов или систем одновременно для получения полезного приспособительного результата. Например, для осуществления акта прямохождения необходима координация работы мышц и центров, обеспечивающих перемещение нижних конечностей в пространстве, смещение центра тяжести тела, изменение тонуса скелетных мышц.
Механизмы управления. В организме клетки, ткани, органы и системы органов работают как единое целое. Их согласованная работа регулируется двумя способами: гуморальным (лат. гумор -- жидкость)--с помощью химических веществ через жидкие среды организма (кровь, лимфу, межклеточную жидкость) и с помощью нервной системы.
Гуморальный механизм управления предусматривает изменение физиологической активности органов и систем под влиянием химических веществ, доставляемых через жидкие среды организма (интерстициальная жидкость, лимфа, кровь, цереброспинальная жидкость и др.). Гуморальный механизм управления является древнейшей формой взаимодействия клеток, органов и систем, поэтому в организме человека и высших животных можно найти различные варианты гуморального механизма регуляции, отражающие в известной мере его эволюцию. Одним из простейших вариантов является изменение деятельности клеток под влиянием продуктов обмена веществ. Последние могут изменять работу клетки, из которой происходит выделение этих продуктов, и других органов, расположенных на достаточном удалении.
Например, под влиянием СО2, образующегося в тканях в результате утилизации кислорода, изменяется активность центра дыхания и как следствие -- глубина и частота дыхания. Под влиянием адреналина, выделяемого в кровь из надпочечников, изменяются частота и сила сердечных сокращений, тонус периферических сосудов, ряд функций центральной нервной системы, интенсивность обменных процессов в скелетных мышцах, увеличиваются коагуляционные свойства крови.
Для гуморального механизма управления характерны относительно медленное распространение и диффузный характер управляющих воздействий, низкая надежность осуществления связи.
Нервный механизм управления предусматривает изменение физиологических функций под влиянием управляющих воздействий, передаваемых из центральной нервной системы по нервным волокнам к органам и системам организма. Нервный механизм является более поздним продуктом эволюции по сравнению с гуморальным, он более сложен и более совершенен. Для него характерна высокая скорость распространения и точная передача объекту регулирования управляющих воздействий, высокая надежность осуществления связи.
В естественных условиях нервный и гуморальный механизмы работают как единый нейрогуморальный механизм управления.
Нейрогуморальный механизм управления представляет собой комбинированную форму, в которой одновременно используются гуморальный и нервный механизмы; оба взаимосвязаны и взаимообусловлены. Так, передача управляющих воздействий с нерва на иннервируемые структуры осуществляется с помощью химических посредников -- медиаторов, действующих на специфические рецепторы.
Еще более тесная и сложная связь обнаружена в некоторых ядрах гипоталамуса. Нервные клетки этих ядер приходят в активное состояние при изменении химических и физико-химических показателей крови. Активность этих клеток вызывает образование и выделение химических факторов, стимулирующих восстановление исходных характеристик крови.
Так, на повышение осмотического давления плазмы крови реагируют специальные нервные клетки супраоптического ядра гипоталамуса, активность которых приводит к выделению в кровь антидиуретического гормона, усиливающего реабсорбцию воды в почках, что обусловливает снижение осмотического давления.
Взаимодействие гуморального и нервного механизмов создает интегративный вариант управления, способный обеспечить адекватное изменение функций от клеточного до организменного уровней при изменении внешней и внутренней среды.
Средства управления. Управление физиологическими функциями осуществляется посредством передачи информации. Информация может содержать сообщение о наличии возмущающих воздействий, отклонение функций. Она передается по афферентным (чувствительным) каналам связи. Информация, передаваемая по эфферентным (исполнительным) каналам связи, содержит сообщение о том, какие функции и в каком направлении следует изменять.
Гуморальный механизм в качестве средств управления и передачи информации использует химические вещества -- продукты обмена веществ, простагландины, регуляторные пептиды, гормоны и др. Так, накопление молочной кислоты в мышцах при физической нагрузке является источником информации о недостатке кислорода.
Нервный механизм в качестве средства управления, передачи информации использует потенциалы возбуждения (ПД, импульсы), которые объединяются в определенные паттерны ("рисунки" возбуждения) по частоте, набору в "пачках", характеристикам межимпульсных интервалов и кодируют необходимую информацию. Показано, что паттерны возбуждений гипоталамических нейронов при формировании мотивации голода специфичны и существенно отличаются от столь же специфичных паттернов возбуждений нейронов, ответственных за формирование мотивации жажды.
Формы управления. Гуморальный и нервный механизмы предусматривают использование нескольких форм управления. Аутокринная, паракринная и гуморальная формы характерны для эволюционно более древнего механизма.
Аутокринная форма управления предполагает изменение функции клетки химическими субстратами, выделяемыми в межклеточную среду самой клеткой.
Паракринная форма управления основана на выделении клетками химических средств управления в межтканевую жидкость. Химические субстраты, распространяясь по межтканевым пространствам, могут управлять функцией клеток, расположенных на некотором удалении от источника управляющих воздействий.
Гуморальная форма управления реализуется при выделении биологических веществ в кровь. С током крови эти вещества достигают всех органов и тканей.
В основе нервного механизма управления лежит рефлекс -- ответная реакция организма на изменения внутренней и внешней среды, осуществляемая при участии центральной нервной системы. Управление посредством рефлексов предусматривает использование двух форм.
Местные рефлексы осуществляются через ганглии автономной нервной системы, которые рассматриваются как нервные центры, вынесенные на периферию. За счет местных рефлексов происходит управление, например моторной и секреторной функциями тонкой и толстой кишки.
Центральные рефлексы протекают с обязательным вовлечением различных уровней центральной нервной системы (от спинного мозга до коры большого мозга). Примером таких рефлексов является выделение слюны при раздражении рецепторов полости рта, опускание века при раздражении склеры глаза, отдергивание руки при раздражении кожи пальцев и др.
В естественных условиях нервный и гуморальный механизмы едины и, образуя нейрогуморальный механизм, реализуются в разнообразных комбинациях, наиболее полно обеспечивающих адекватное уравновешивание организма со средой обитания. Например, физиологически активные вещества, поступая в кровь, несут информацию в ЦНС об отклонении какой-либо функции. Под влиянием этой информации формируется поток управляющих нервных импульсов к эффекторам для коррекции отклонения.
В других случаях поступление информации в ЦНС по нервным каналам приводит к выделению гормонов, корригирующих возникшие отклонения. Нейрогуморальный механизм создает в процессах управления многозвенные кольцевые связи, где различные формы гуморального механизма сменяются и дополняются нервными, а последние обеспечивают включение гуморальных.
Заключение
В настоящее время организм человека принято рассматривать не просто как многоклеточную колонию, а как сложноорганизованную систему, имеющую несколько уровней организации.
Самый низкий - базовый уровень, это клеточный. Совокупность клеток, сходных по строению и свойствам, образует более высокий уровень - тканевый.
Из совокупности тканей состоят органы, - это еще более высокий уровень организации. Наконец, совокупность органов, выполняющих сходные функции, формирует системы органов и позволяет многоклеточной колонии, которой по сути является человек, существовать как единому целому.
Таким образом, организм - это совокупность систем органов.
Системы же органов - это совокупность органов. Органы - совокупность тканей. Ткани - совокупность клеток. Вот и получается, что организм человека - это сложноорганизованная система, в которой каждый её элемент сам представляет собой систему, т.е. многоклеточный организм - это система систем.
Каждая система органов выполняет свою, конкретную функцию, но в целом организме она приобретает новое свойство - осуществлять связь с внешней средой для того, чтобы на любое изменение окружающей среды так изменить работу органов и систем органов, чтобы химический состав и физические свойства внутренней среды не изменились. Это необходимо для сохранения и поддержания постоянства внутренней среды.
Системы органов работают не изолированно, а объединяются для достижения полезного результата, образуя временное объединение - функциональную систему. Функционирование организма как единого целого обеспечивается взаимодействием нервной и гуморальной регуляции.
Вопрос №4
Единство регуляторных механизмов заключается в их взаимодействии. Так, например, увеличение содержания углекислого газа в крови возбуждает хеморецепторы аортальной и синокаротидной рефлекторных зон. При этом увеличивается интенсивность импульсов по соответствующим нервам в ЦНС, а оттуда – к дыхательной мускулатуре. В результате дыхание становится более частым и более глубоким. При действии холодного воздуха на терморецепторы кожи увеличивается интенсивность афферентных импульсов в ЦНС. Это ведет к выбросу гормонов, увеличивающих интенсивность обмена веществ, и к увеличению выработки тепла.
Особенностей нервного и гуморального механизмов регуляции функций организма несколько, поэтому рассмотрим их по пунктам.
1. Нервная система, в отличие от гуморального механизма регуляции, организует ответные реакции на изменение внешней среды. Пусковым звеном в нейрогуморальной регуляции при изменении параметров внутренней среды организма также нередко является нервная система.
2. У нервного и гуморального механизмов регуляции функций различные способы связи: у нервной системы – нервный импульс как универсальный сигнал, а у гуморального механизма связь с регулируемым органом или тканью осуществляется с помощью различных химических веществ (гормонов, медиаторов, метаболитов и других).
3. У нервного и гуморального механизмов регуляции различная точность связи. Химические вещества, попадая в кровь, разносятся по всему организму и зачастую действуют на многие ткани и органы неизбирательно (генерализованно). Нервный импульс способен оказывать точечное, локальное влияние на отдельный орган или даже группу клеток этого органа. Однако у некоторых гормонов может быть и “точный адресат”: например кортикотропин, хоть и переносится кровью по всему организму, но влияет строго на кору надпочечников. В свою очередь, нервная система может оказывать генерализованное воздействие: например, при активации симпатического отдела вегетативной нервной системы мобилизация затрагивает практически все системы организма.
4. У нервного и гуморального механизмов регуляции различная скорость связи. Химические вещества распространяются с током крови относительно медленно: самая большая скорость тока крови – в аорте (2,5 м/с), самая маленькая – в капиллярах (0,3-0,5 м/с). Нервный импульс распространяется со скоростью до 120 м/с.
5. Гормональные механизмы регуляции подчиняются нервной системе, которая передает свое влияние на эндокринные железы непосредственно в виде нервного импульса или с помощью медиаторов (посредников).
6. У гуморального механизма регуляции нередко наблюдается противоположное влияние биологически активных веществ на один и тот же орган, в зависимости от точки приложения действия этого химического вещества. Например, растворенный в крови углекислый газ, действуя непосредственно на сосуды, вызывает их расширение, а при действии на центр кровообращения в головном мозге – сужение сосудов. Сигналы нервной системы имеют однозначный характер.
Вопрос№5
Нейроны образуют цепочки, которые передают импульсы. Отростки нервных клеток называют Нервными волокнами. Нервные волокна разделяют на Мякотные, тнмиелинизированные, И Безмякотные, Или Немиелинизированные.
Мякотные чувствительные и двигательные волокна входят в состав нервов, снабжающих органы чувств и скелетную мускулатуру, имеются также и в вегетативной нервной системе. Безмякотные волокна у человека расположены в симпатической нервной системе.
Обычно в состав нерва входят как мякотные, так и безмякотные волокна.
Поверхность которого покрыта плазматической мембраной, а его содержимое представляет собой аксоплазму, пронизанную тончайшими нейрофибриллами, между которыми находится большое количество митохондрий. Безмякотные волокна изолированы друг от друга отдельными шванновскими клетками. В миелинизированном волокне осевой цилиндр покрыт миелиновой оболочкой. Миелиновая оболочка образуется в результате того, что шванновская клетка многократно обертывает осевой цилиндр, и слои ее сливаются.
Миелин — вещество липидной природы, обладает большим электрическим сопротивлением, так как препятствует прохождению ионов и действует как изолятор, подобно резиновому или пластиковому покрытию электрического провода. Через равные промежутки миелиновая оболочка прерывается, оставляя открытыми участками мембраны шириной около 1 мкм. Эти участки получили название Перехватов Ранвье. В перехватах электрическое сопротивление намного меньше, и поэтому только здесь может возникать возбуждение. Расстояние между перехватами пропорционально диаметру волокна. Чем больше диаметр волокна, тем длиннее межперехватный участок. Миелиновая оболочка выполняет также трофическую функцию, т. к. принимает участие в процессах обмена веществ и роста осевого цилиндра. Нейрофибриллы обеспечивают транспорт веществ и некоторых органелл по нервным волокнам от тела нейрона к окончаниям и наоборот. На периферию по аксону транспортируются: белки, формирующие ионные каналы и насосы, медиаторы и т. д. Для транспорта веществ расходуется энергия АТФ.
Представляет собой часть нервной системы, которая соединяет центральную нервную систему с органами чувств и с произвольными мышцами. В ней выделяют две разные группы нервов: черепномозговые и спинномозговые.
Черепномозговые нервы - это 12 пар нервов, отходящих от головного мозга и направляющихся к различным органам головы, за исключением одного, идущего к сердцу и в брюшную полость. Эти нервы выполняют чувствительные и (или) двигательные функции.
• I napa. Обонятельный нерв: передает в головной мозг обонятельные ощущения от слизистой оболочки носовой полости.
• II пара. Зрительный нерв: идет к сетчатке глаз и передает зрительные ощущения.
• III пара. Глазодвигательный нерв: обеспечивает некоторые движения глазного яблока.
• IV пара. Блоковый нерв: обеспечивает движение одной из мышц глаза.
• V napa. Тройничный нерв: придает чувствительность всему лицу и обеспечивает движение жевательных мышц.
• VI пара. Отводящий нерв: заставляет поворачиваться глазное яблоко в наружную сторону.
• VII пара. Лицевой нерв: иннервирует: мимические мышцы лица и обеспечивает чувствительность нижней части языка.
• VIII пара. Преддверно-улитковый нерв: передает сигналы, улавливаемые средним ухом (звуки) и внутренним ухом (равновесие).
• IX пара. Языкоглоточный нерв: воздействует на мышцы пищевода и передает ощущения нижней части языка.
• Х пара. Блуждающий нерв: идет к внутренним органам грудной и брюшной полости и регулирует пищеварительные, обменные и дыхательные функции.
• XI пара. Добавочный нерв: обеспечивает движение некоторых мышц шеи.
• XII пара. Подъязычный нерв: Облегчает движения речепроизношения, глотания и жевания.
Спинномозговые нервы - это 31 пара нервов, отходящих от спинного мозга и управляющих остальной нервной периферической системой, а также частью вегетативной нервной системы. Эти смешанные нервы берут начало в сером веществе спинного мозга, которое находится во внутренней части мозга и окружено белым веществом.
Нервы образуют два хорошо дифференцированных отростка - передний, или вентральный, отросток состоит из двигательных волокон, а задний, или дорсальный, состоит из чувствительных волокон. Затем в области межпозвоночного отверстия они соединяются в один ствол, а потом снова ветвятся.
Одна вентральная ветвь, которая делится на тысячи ответвлений, идет к шее, рукам, передней части груди и ногам. Дорсальная ветвь заворачивает за позвоночный столб и направляется к спине. Несколько спинномозговых нервов могут идти вместе до места назначения, образуя плотные сети, называемые сплетениями.
Вопрос№6
Общая характеристика нервной ткани
Нервная ткань(textus nervosus) — это высокоспециализированный вид ткани. Состоит нервная ткань из двух компонентов: нервных клеток (нейронов или нейроцитов) и нейроглии. Последняя занимает все промежутки между нервными клетками. Нервные клетки обладают свойствами воспринимать раздражения, приходить в состояние возбуждения, вырабатывать нервные импульсы и передавать их. Этим и определяется гистофизиологическое значение нервной ткани в корреляции и интеграции тканей, органов, систем организма и его адаптации. Источником развития нервной ткани является нервная пластинка, представляющая собой дорзальное утолщение эктодермы зародыша.
Нервные клетки — нейроны
Структурно-функциональной единицей нервной ткани являются нейроны или нейроциты. Под этим названием подразумевают нервные клетки (их тело — перикарион) с отростками, образуюшими нервные волокна (вместе с глией) и заканчивающимися нервными окончаниями. В настоящее время в широком смысле в понятие нейрон включают и окружающую его глию с сетью кровеносных капилляров, обслуживающих этот нейрон. В функциональном отношении нейроны классифицируют на 3 вида: рецепторные (афферентные или чувствительные), - генерирующие нервные импульсы; эффекторные(эфферентные) — побуждающие ткани рабочих органов к действию: и ассоциативные,образующие разнообразные связи между нейронами. Особенно много ассоциативных нейронов в нервной системе человека. Из них состоит большая часть полушарий головного мозга, спинной мозг и мозжечок. Подавляющее большинство чувствительных нейронов расположено в спинномозговых узлах. К эфферентным нейронам относятся двигательные нейроны (мотонейроны) передннх рогов спинного мозга, имеются также и особые неросекреторные нейроны (в ядрах гипоталамуса), вырабатывающие нейрогормоны. Последние поступают в кровь и спинномозговую жидкость и осуществляют взаимодействие нервной и гуморальной систем, т. е. осуществляют процесс их интеграции (таблица 10).
Характерной структурной особенностью нервных клеток является наличие у них двух видов отростков — аксона и дендритов. Аксон — единственный отросток нейрона, обычно тонкий, мало ветвящийся, отводящий импульс от тела нервной клетки (перикариона). Дендриты, напротив, приводят импульс к перикариону, это обычно более толстые и более ветвящиеся отростки. Количество дендритов у нейрона колеблется от одного до нескольких в зависимости от типа нейронов. По количеству отростков нейроциты подразделяются на несколько видов. Одноотростчатые нейроны, содержащие только аксон, называют униполярными(у человека они отсутствуют). Нейроны, имеющие 1 аксон и 1 дендрит, получили название биполярных.К ним относятся нервные клетки сетчатки глаза и спиральных ганглиев. И, наконец, имеются мультиполярные, многоотростчатые нейроны. Они имеют один аксон и два и более дендрита. Такие нейроны наиболее распространены в нервной системе человека. Разновидностью биполярных нейроцитов являются псевдоуниполярные (ложноодноотростчатые) чувствительные клетки спинномозговых и краниальных узлов. По данным электронной микроскопии аксон и дендрит этих клеток выходят сближенно, тесно примыкая друг к другу, из одного участка цитоплазмы нейрона. Это создает впечатление (при оптической микроскопии на импрегенированных препаратах) о наличии у таких клеток всего лишь одного отростка с последующим его Т-образным делением.
Ядра нервных клеток округлые, имеют вид светлого пузырька (пузырьковидные), лежащего обычно в центре перикариона. В нервных клетках имеются все органеллы общего значения, в том числе и клеточный центр. При окрашивании метиленовым синим, толуидиновым синим и крезиловым фиолетовым в перикарионе нейрона и начальных отделах дендритов выявляются глыбки разной величины и формы. Однако в основание аксона они никогда не заходят. Это хроматофильная субстанция (субстанция Ниссля или базофильное вещество) получила название тигроидного вещества. Оно является показателем функциональной активности нейрона и, в частности, синтеза белка. Под электронным микроскопом тигроидное вещество соответствует хорошо развитой гранулярной эндоплазматической сети, нередко с правильно ориентированным расположением мембран. Это вещество содержит значительное количество РНК, РНП, липидов. иногда гликоген.
При импрегнации солями серебра в нервных клетках выявляются очень характерные структуры — нейрофибриллы. Их относят к органеллам специального значения. Они образуют густую сеть в теле нервной клетки, а в отростках располагаются упорядоченно, параллельно длине отростков. Под электронным микроскопом в нервных клетках выявляются более тонкие нитчатые образования, которые на2—3 порядка тоньше нейрофибрилл. Это, так называемые нейрофиламенты и нейротубулы. По-видимому, их функциональное значение связано с распространением по нейрону нервного импульса. Имеется предположение, что они обеспечивают транспорт нейромедиаторов по телу и отросткам нервных клеток.
Нейроглия
Вторым постоянным компонентом нервной ткани является неироглия(neuroglia). Под этим термином подразумевают совокупность особых клеток, расположенных между нейронами. Нейроглиальные клетки выполняют опорно-трофическую, секреторную и защитную функции. Нейроглия подразделяется на два основных вида: макроглию,представленную глиоцитами, происходящими из нервной трубки и микроглию. включающую глиальные макрофаги, являющиеся производными мезенхимы. Глиальных макрофагов часто называют своеобразными “санитарами” нервной ткани, т. к. они обладают выраженной способностью к фагоцитозу. Глиоциты макроглии, в свою очередь, классифицируют на три типа. Один из них представлен эпендимиоцитами,выстилающими спинно-мозговой канал и желудочки мозга. Они выполняют разграничительную и секреторную функции. Имеются также астроциты — клетки звездчатой формы, проявляющие выраженную опорно-трофическую и разграничительную функции. И, наконец, различают так называемые олигодендроциты. которые сопровождают нервные окончания и участвуют в процессах рецепции. Эти клетки окружают также тела нейронов, участвуя в обмене веществ между нервными клетками и кровеносными сосудами. Олигодендроглиоциты образуют также оболочки нервных волокон, и тогда они носят название леммоцитов (швановских клеток). Леммоциты принимают непосредственное участие в трофике и проведении возбуждения по нервным волокнам, в процессах дегенерации и регенерации нервных волокон.
Нервные волокна
Нервные волокна,(neurofibrae) бывают двух видов: миелиновые и безмиелиновые. Оба типа нервных волокон имеют единый план строения и представляют собой отростки нервных клеток (осевые цилиндры), окруженные оболочкойиз олнгодендроглии — леммоцитов (шванновских клеток). С поверхности к каждому волокну примыкает базальная мембрана с прилегающими к ней коллагеновыми волокнами.
Миелиновые волокна(neurofibrae myelinatae)имеют относительно больший диаметр, сложно устроенную оболочку их леммоцитов и большую скорость проведения нервного импульса (15—120 м/сек). В оболочке миелинового волокна выделяют два слоя: внутренний, миелиновый (stratum myelini), более толстый, содержащий много липидов и окрашивающийся осмием в черный цвет. Он состоит из плотноупакованных по спирали вокруг осевого цилиндра слоев-пластин плазматической мембраны леммоцита. Наружный, более тонкий и светлый слой оболочки миелинового волокна, представлен цитоплазмой леммоцита с его ядром. Этот слой называют неврилеммой или шванновской оболочкой. По ходу миелинового слоя имеются косо идущие светлые насечки миелина (incisurae myelini). Это места, где между пластинами миелина проникают прослойки цитоплазмы леммоцита. Сужения нервного волокна, где отсутствует миелиновый слой, называют узловыми перехватами (nodi neurofibrae). Они соответствуют границе двух смежных леммоцитов.
Безмиелиновые нервные волокна(neurofibrae nonmyelinatae)более тонкие, чем миелиновые. В их оболочке, образованной тоже леммоцитами, отсутствует миелиновый слой, насечки и перехваты. Такое строение безмиелнновых нервных волокон обусловлено тем, что хотя леммоциты и охватывают осевой цилиндр, но они не закручиваются вокруг него. В один леммоцит при этом может быть погружено несколько осевых цилиндров. Это волокна кабельного типа. Безмиелиновые нервные волокна входят преимущественно в состав вегетативной нервной системы. Нервные импульсы вних распространяются медленнее (1—2 м/сек),чемв миелиновых, и имеют тенденцию к рассеиванию и затуханию.
Нервные окончания
Нервные волокна заканчиваются концевыми нервными аппаратами, называемыми нервными окончаниями(terminationes nervorum).Различают три вида нервных окончаний: эффекторы (эффекторные), рецепторы (чувствительные) и межнейронные связи — синапсы.
Эффекторы(effectores)бывают двигательными и секреторными. Двигательные окончания представляют собой концевые аппараты аксонов моторных клеток (преимущественно передних рогов спинного мозга) соматической или вегетативной нервной системы. Двигательные окончания в поперечно-полосатой мышечной ткани называют нервно-мышечными окончаниями (синапсами) или моторными бляшками. Моторные нервные окончания в гладкой мышечной ткани имеют вид пуговчатых утолщений или четкообразных расширений. Секреторные окончания выявлены на железистых клетках.
Рецепторы(receptores)представляют собой концевые аппараты дендритов чувствительных нейронов. Одни из них воспринимают раздражение из внешней среды — этоэкстеро-рецепторы. Другие получают сигналы от внутренних органов — это интерорецепторы. Среди чувствительных нервных окончаний по их функциональным проявлениям различают: механорецепторы, барорецепторы, терморецепторы и хеморецепторы.
По строению рецепторы подразделяют на свободные — это рецепторы в виде усиков, кустиков, клубочков. Они состоят только из ветвлений самого осевого цилиндра и не сопровождаются нейроглией. Другой вид рецепторов — это несвободные. Они представлены терминалями осевого цилиндра, сопровождаемыми нейроглиальными клетками. Среди несвободных нервных окончаний выделяют инкапсулированные, покрытые соединительнотканными капсулами. Это осязательные тельца Мейснера, пластинчатые тельца Фатер-Пачини и др. Второй разновидностью несвободных нервных окончаний являются неинкапсулированные нервные окончания. К ним относят осязательные мениски или осязательные диски Меркеля, залегающие в эпителии кожи и др.
Межнейрональные синапсы (synapses interneuronales) — это места контактов двух нейронов. По локализации различают следующие виды синапсов: аксодендритические, аксосоматические и аксоаксональные (тормозные). Реже встречаются синапсы дендродендритические, дендросоматические и сомасоматические. В световом микроскопе синапсы имеют вид колечек, пуговок, булав (концевые синапсы) или тонких нитей, стелющихся по телу или отросткам другого нейрона. Это так называемые касательные синапсы. На дендритах выявляются синапсы, получившие название дендритических шипиков (шипиковый аппарат). Под электронным микроскопом в синапсах различают так называемый пресинаптический полюс с пресинаптической мембраной одного нейрона и постсинаптический полюс с постсинаптической мембраной (другого нейрона). Между этими двумя полюсами располагается синоптическаящель. На полюсах синапса часто сосредоточено большое количество митохондрий, а в области пресинаптического полюса и синаптической щели — синаптических пузырьков (в химических синапсах).
По способу передачи нервного импульса различают химические. электрические и смешанные синапсы. В химических синапсах в синаптических пузырьках содержатся медиаторы — норадреналин в адренэргнческих синапсах (темные синапсы) и ацетилхолин в холинэргических синапсах (светлые синапсы). Нервный импульс в химических синапсах передается с помощью этих медиаторов. В электрических (беспузырьковых) синапсах не имеется синаптических пузырьков с медиаторами. Однако в них наблюдается тесный контакт пре- и постсинаптических мембран. В этом случае нервный импульс передается с помощью электрических потенциалов. Найдены и смешанные синапсы, где передача импульсов осуществляется, видимо, обоими указанными путями.
По производимому эффекту различают возбуждающие и тормозные синапсы. В тормозных синапсах медиатором может быть гамма-аминомаслянная кислота. По характеру распространения импульсов различают дивергентные и конвергентные синапсы. В дивергентных синапсах импульс из одного места их возникновения поступает на несколько нейронов, не связанных последовательно. В конвергентных синапсах импульсы из разных мест возникновения поступают, наоборот, к одному нейрону. Однако в каждом синапсе всегда имеет место только одностороннее проведение нервного импульса.
Нейроны посредством синапсов объединяются в нейронные цепи. Цепь нейронов, обеспечивающая проведение нервного импульса от рецептора чувствительного нейрона до двигательного нервного окончания, называется рефлекторной дугой.Существуют простые и сложные рефлекторные дуги.
Простая рефлекторная дугаобразована всего двумя нейронами: первый — чувствительный и второй — двигательный. В сложных рефлекторных дугах между этими нейронами включены еще ассоциативные, вставочные нейроны. Различают также соматические и вегетативные рефлекторные дуги. Соматические рефлекторные дуги регулируют работу скелетной мускулатуры, а вегетативные — обеспечивают непроизвольное сокращение мускулатуры внутренних органов.
Вопрос №7
ВЕГЕТАТИВНЫЙ (АВТОНОМНЫЙ) ОТДЕЛ НЕРВНОЙ СИСТЕМЫ [ vegetative division of nervous system ]
(Лат.: vegeto - оживлять, одушевлять; 14 в. Греч.: αΰτονομία - автономия, существование или действие независимо по отношению к кому-либо, чему-либо, самостоятельный, 17 в).
Вегетативный, или автономный отдел нервной системы - это часть нервной системы, представляющая собой совокупность управляющих звеньев, регуляторов вегетативных систем. Функцией вегетативного отдела нервной системы является регулирование внутренней среды организма, то есть поддержание гомеостаза посредством управления функциями вегетативных систем. Вместе с соматическим отделом нервной системы вегетативный отдел участвует в управлении поведением человека.
Нервную систему разделяют на центральную часть (центральную нервную систему) и периферическую часть (периферическую нервную систему). В соответствии с этим различают центральную часть соматического отдела нервной системы (соматические нервные центры) и центральную часть вегетативного отдела нервной системы (вегетативные нервные центры), а также периферическую часть соматического отдела нервной системы и периферическую часть вегетативного отдела нервной системы.
Имеются существенные различия между периферической частью вегетативного отдела нервной системы и периферической частью соматического отдела нервной системы. Это обусловлено тем, что вегетативный отдел не имеет собственных афферентных периферических структур, но использует афферентные нейронные сети общие с соматическим отделом нервной системы. Эфферентные структуры соматического отдела нервной системы и, в частности, исполнительные элементы регуляторов (конечные звенья эфферентной цепи), расположены исключительно в пределах центральной части нервной системы. Эфферентные структуры вегетативного отдела нервной системы могут быть расположены как в центральной, так и в периферической частях нервной системы. В частности, исполнительные элементы управляющих звеньев вегетативного отдела нервной системы расположены исключительно за пределами центральной части нервной системы, в периферических вегетативных узлах (ганглиях).
Кроме того вегетативный отдел разделяют на две части - симпатическую часть вегетативного отдела нервной системы и парасимпатическую часть вегетативного отдела нервной системы . Центральные нейроны симпатической и парасимпатической частей могут быть расположены на различных уровнях нервной системы. Афферентная информация может поступать в вегетативные нервные центры из любых областей организма. Периферические структуры обеих частей вегетативного отдела нервной системы являются исключительно эфферентными, то есть формирующими и посылающими сигналы управления к объектам управления соответствующих систем. Строение симпатических эфферентных цепей и парасимпатических эфферентных цепей различно.
Влияния симпатических и парасимпатических сигналов в отдельности на вегетативные функции имеют, как правило, антагонистический характер. Однако совместное их действие является функционально синергичным, поскольку подчинено единым целям.
В отличие от соматического отдела нервной системы, функции вегетативного отдела нервной системы осуществляются без непосредственного участия сознания.
Вопрос№8
Вегетати́вная не́рвная систе́ма (от лат. vegetatio — возбуждение, от лат. vegetativus - растительный), ВНС, автономная нервная система, ганглионарная нервная система (от лат. ganglion — нервный узел), висцеральная нервная система (от лат. viscera — внутренности), органная нервная система, чревная нервная система, systema nervosum autonomicum (PNA) — часть нервной системы организма, комплекс центральных и периферических клеточных структур, регулирующих функциональный уровень внутренней жизни организма, необходимый для адекватной реакции всех его систем.
Вегетативная нервная система — отдел нервной системы, регулирующий деятельность внутренних органов, желёз внутренней и внешней секреции, кровеносных и лимфатических сосудов[1]. Играет ведущую роль в поддержании постоянства внутренней среды организма и в приспособительных реакциях всех позвоночных.
Анатомически и функционально вегетативная нервная система подразделяется на симпатическую, парасимпатическую и метасимпатическую. Симпатические и парасимпатические центры находятся под контролем коры больших полушарий и гипоталамических центров[2].
В симпатическом и парасимпатическом отделах имеются центральная и периферическая части. Центральную часть образуют тела нейронов, лежащих в спинном и головном мозге. Эти скопления нервных клеток получили название вегетативных ядер. Отходящие от ядер волокна, вегетативные ганглии, лежащие за пределами центральной нервной системы, и нервные сплетения в стенках внутренних органов образуют периферическую часть вегетативной нервной системы.
Симпатические ядра расположены в спинном мозге. Отходящие от него нервные волокна заканчиваются за пределами спинного мозга в симпатических узлах, от которых берут начало нервные волокна. Эти волокна подходят ко всем органам.
Парасимпатические ядра лежат в среднем и продолговатом мозге и в крестцовой части спинного мозга. Нервные волокна от ядер продолговатого мозга входят в состав блуждающих нервов. От ядер крестцовой части нервные волокна идут к кишечнику, органам выделения.
Метасимпатическая нервная система представлена нервными сплетениями и мелкими ганглиями в стенках пищеварительного тракта, мочевого пузыря, сердца и некоторых других органов. Деятельность вегетативной нервной системы не зависит от воли человека.
Симпатическая нервная система усиливает обмен веществ, повышает возбуждаемость большинства тканей, мобилизует силы организма на активную деятельность. Парасимпатическая система способствует восстановлению израсходованных запасов энергии, регулирует работу организма во время сна.
Под контролем автономной системы находятся органы кровообращения, дыхания, пищеварения, выделения, размножения, а также обмен веществ и рост. Фактически эфферентный отдел ВНС осуществляет нервную регуляцию функций всех органов и тканей, кроме скелетных мышц, которыми управляет соматическая нервная система.
В отличие от соматической нервной системы, двигательный эффекторный нейрон в автономной нервной системе находится на периферии, и спинной мозг лишь косвенно управляет его импульсами.
Термины автомномная система, висцеральная система, симпатический отдел нервной системы неоднозначны. В настоящее время симпатическими называют только часть висцеральных эфферентных волокон. Однако различные авторы используют термин «симпатический» по-разному:
в узком понимании, как описано в предложении выше;
в качестве синонима термина «автономный»;
как название всей висцеральной («вегетативной»)[3] нервной системы — как афферентной, так и эфферентной.
Терминологическая путаница возникает также, когда автономной называют всю висцеральную систему (и афферентную, и эфферентную).
Классификация отделов висцеральной нервной системы позвоночных, приведённая в руководстве[4] А. Ромера и Т. Парсонса, выглядит следующим образом:
Висцеральная нервная система:
афферентная;
эфферентная:
особая жаберная;
автономная:
симпатическая;
парасимпатическая.
Влияние симпатического и парасимпатического отделов на отдельные органы
Влияние симпатического отдела:
На сердце — повышает частоту и силу сокращений сердца.
На артерии — не влияет в большинстве органов, вызывает расширение артерий половых органов и мозга, сужение коронарных артерий и артерий лёгких[5].
На кишечник — угнетает перистальтику кишечника и выработку пищеварительных ферментов.
На слюнные железы — угнетает слюноотделение.
На мочевой пузырь — расслабляет мочевой пузырь.
На бронхи и дыхание — расширяет бронхи и бронхиолы, усиливает вентиляцию лёгких.
На зрачок — расширяет зрачки.
Влияние парасимпатического отдела:
На сердце — уменьшает частоту и силу сокращений сердца.
На артерии — расширяет артерии.
На кишечник — усиливает перистальтику кишечника и стимулирует выработку пищеварительных ферментов.
На слюнные железы — стимулирует слюноотделение.
На мочевой пузырь — сокращает мочевой пузырь.
На бронхи и дыхание — сужает бронхи и бронхиолы, уменьшает вентиляцию лёгких.
На зрачок — сужает зрачки. Нейромедиаторы и клеточные рецепторы
Симпатический и парасимпатический отделы оказывают различное, в ряде случаев противонаправленное влияние на различные органы и ткани, а также перекрёстно влияют друг на друга. Различное воздействие этих отделов на одни и те же клетки связано со спецификой выделяемых ими нейромедиаторов и со спецификой рецепторов, имеющихся на пресинаптических и постсинаптических мембранах нейронов автономной системы и их клеток-мишеней.
Преганглионарные нейроны обоих отделов автономной системы в качестве основного нейромедиатора выделяют ацетилхолин, который действует на никотиновые рецепторы ацетилхолина на постсинаптической мембране постганглионарных (эффекторных) нейронов. Постганглионарные нейроны симпатического отдела, как правило, выделяют в качестве медиатора норадреналин, который действует на адренорецепторы клеток-мишеней. На клетках-мишенях симпатических нейронов бета-1 и альфа-1 адренорецепторы в основном сосредоточены на постсинаптических мембранах (это означает, что in vivo на них действует в основном норадреналин), а аль-2 и бета-2 рецепторы — на внесинаптических участках мембраны (на них в основном действует адреналин крови). Лишь некоторые постганглионарные нейроны симпатического отдела (например, действующие на потовые железы) выделяют ацетилхолин.
Постганглионарные нейроны парасимпатического отдела выделяют ацетилхолин, который действует на мускариновые рецепторы клеток-мишеней.
На пресинаптической мембране постганглионарных нейронов симпатического отдела преобладают два типа адренорецепторов: альфа-2 и бета-2 адренорецепторы. Кроме того, на мебране этих нейронов расположены рецепторы к пуриновым и пиримидиновым нуклеотидоам (P2X-рецепторы АТФ и др.), никотиновые и мускариновые холинорецепторы, рецепторы нейропептидов и простагландинов, опиоидные рецепторы[6].
При действии на альфа-2 адренорецепторы норадреналина или адреналина крови падает внутриклеточная концентрация ионов Ca2+, и выделение норадреналина в синапсах блокируется. Возникает петля отрицательной обратной связи. Альфа-2 рецепторы более чувствительны к норадреналину, чем к адреналину.
При действии норадреналина и адреналине на бета-2 адренорецепторы выделение норадреналина обычно усиливается. Этот эффект наблюдается при обычном взаимодействии с Gs-белком, при котором растёт внутриклеточная концентрация цАМФ. Бета-два рецепторы более чувствительны к адреналину. Поскольку под действием норадреналина симпатических нервов из мозгового слоя надпочечников выделяется адреналин, возникает петля положительной обратной связи.
Однако в некоторых случаях активация бета-2 рецепторов может блокировать выделение норадреналина. Показано, что это может быть следствием взаимодействия бета-2 рецепторов с Gi/o белками и связывания (секвестирования) ими Gs-белков, которое, в свою очередь, предотвращает взаимодействие Gs-белков с другими рецепторами [1].
При действии ацетилхолина на мускариновые рецепторы симпатических нейронов выделение норадреналина в их синапсах блокируется, а при действии на никотиновые рецепторы — стимулируется. Поскольку на пресинаптических мембранах симпатических нейронов преобладают мускариновые рецепторы, обычно активация парасимпатических нервов снижает уровень выделения норадреналина из симпатических нервов.
На пресинаптических мембранах постганглионарных нейронов парасимпатического отдела преобладают альфа-2 адренорецепторы. При действии на них норадреналина выделение ацетилхолина блокируется. Таким образом, симпатические и парасимпатические нервы взаимно ингибируют друг друга.
Вопрос №9
НЕРВНАЯ СИСТЕМА, сложная сеть структур, пронизывающая весь организм и обеспечивающая саморегуляцию его жизнедеятельности благодаря способность реагировать на внешние и внутренние воздействия (стимулы). Основные функции нервной системы – получение, хранение и переработка информации из внешней и внутренней среды, регуляция и координация деятельности всех органов и органных систем. У человека, как и у всех млекопитающих, нервная система включает три основных компонента: 1) нервные клетки (нейроны); 2) связанные с ними клетки глии, в частности клетки нейроглии, а также клетки, образующие неврилемму; 3) соединительная ткань. Нейроны обеспечивают проведение нервных импульсов; нейроглия выполняет опорные, защитные и трофические функции как в головном, так и в спинном мозгу, а неврилемма, состоящая преимущественно из специализированных, т.н. шванновских клеток, участвует в образовании оболочек волокон периферических нервов; соединительная ткань поддерживает и связывает воедино различные части нервной системы.
Нервную систему человека подразделяют по-разному. Анатомически она состоит из центральной нервной системы (ЦНС) и периферической нервной системы (ПНС). ЦНС включает головной и спинной мозг, а ПНС, обеспечивающая связь ЦНС с различными частями тела, – черепно-мозговые и спинномозговые нервы, а также нервные узлы (ганглии) и нервные сплетения, лежащие вне спинного и головного мозга.
Нейрон. Структурно-функциональной единицей нервной системы является нервная клетка – нейрон. По оценкам, в нервной системе человека более 100 млрд. нейронов. Типичный нейрон состоит из тела (т.е. ядерной части) и отростков, одного обычно неветвящегося отростка, аксона, и нескольких ветвящихся – дендритов. По аксону импульсы идут от тела клетки к мышцам, железам или другим нейронам, тогда как по дендритам они поступают в тело клетки.
В нейроне, как и в других клетках, есть ядро и ряд мельчайших структур – органелл (см. также КЛЕТКА). К ним относятся эндоплазматический ретикулум, рибосомы, тельца Ниссля (тигроид), митохондрии, комплекс Гольджи, лизосомы, филаменты (нейрофиламенты и микротрубочки).
Нервный импульс. Если раздражение нейрона превышает определенную пороговую величину, то в точке стимуляции возникает серия химических и электрических изменений, которые распространяются по всему нейрону. Передающиеся электрические изменения называются нервным импульсом. В отличие от простого электрического разряда, который из-за сопротивления нейрона будет постепенно ослабевать и сумеет преодолеть лишь короткое расстояние, гораздо медленнее «бегущий» нервный импульс в процессе распространения постоянно восстанавливается (регенерирует).
Концентрации ионов (электрически заряженных атомов) – главным образом натрия и калия, а также органических веществ – вне нейрона и внутри него неодинаковы, поэтому нервная клетка в состоянии покоя заряжена изнутри отрицательно, а снаружи положительно; в результате на мембране клетки возникает разность потенциалов (т.н. «потенциал покоя» равен примерно –70 милливольтам). Любые изменения, которые уменьшают отрицательный заряд внутри клетки и тем самым разность потенциалов на мембране, называются деполяризацией.
Плазматическая мембрана, окружающая нейрон, – сложное образование, состоящее из липидов (жиров), белков и углеводов. Она практически непроницаема для ионов. Но часть белковых молекул мембраны формирует каналы, через которые определенные ионы могут проходить. Однако эти каналы, называемые ионными, открыты не постоянно, а, подобно воротам, могут открываться и закрываться.
При раздражении нейрона некоторые из натриевых (Na+) каналов открываются в точке стимуляции, благодаря чему ионы натрия входят внутрь клетки. Приток этих положительно заряженных ионов снижает отрицательный заряд внутренней поверхности мембраны в области канала, что приводит к деполяризации, которая сопровождается резким изменением вольтажа и разрядом – возникает т.н. «потенциал действия», т.е. нервный импульс. Затем натриевые каналы закрываются.
Во многих нейронах деполяризация вызывает также открытие калиевых (K+) каналов, вследствие чего ионы калия выходят из клетки. Потеря этих положительно заряженных ионов вновь увеличивает отрицательный заряд на внутренней поверхности мембраны. Затем калиевые каналы закрываются. Начинают работать и другие мембранные белки – т.н. калий-натриевые насосы, обеспечивающие перемещение Na+ из клетки, а K+ внутрь клетки, что, наряду с деятельностью калиевых каналов, восстанавливает исходное электрохимическое состояние (потенциал покоя) в точке стимуляции.
Электрохимические изменения в точке стимуляции вызывают деполяризацию в прилегающей точке мембраны, запуская в ней такой же цикл изменений. Этот процесс постоянно повторяется, причем в каждой новой точке, где происходит деполяризация, рождается импульс той же величины, что и в предыдущей точке. Таким образом, вместе с возобновляющимся электрохимическим циклом нервный импульс распространяется по нейрону от точки к точке.
Нервы, нервные волокна и ганглии. Нерв – это пучок волокон, каждое из которых функционирует независимо от других. Волокна в нерве организованы в группы, окруженные специализированной соединительной тканью, в которой проходят сосуды, снабжающие нервные волокна питательными веществами и кислородом и удаляющие диоксид углерода и продукты распада. Нервные волокна, по которым импульсы распространяются от периферических рецепторов к ЦНС (афферентные), называют чувствительными или сенсорными. Волокна, передающие импульсы от ЦНС к мышцам или железам (эфферентные), называют двигательными или моторными. Большинство нервов смешанные и состоят как из чувствительных, так и из двигательных волокон. Ганглий (нервный узел) – это скопление тел нейронов в периферической нервной системе.
Волокна аксонов в ПНС окружены неврилеммой – оболочкой из шванновских клеток, которые располагаются вдоль аксона, как бусины на нити. Значительное число этих аксонов покрыто дополнительной оболочкой из миелина (белково-липидного комплекса); их называют миелинизированными (мякотными). Волокна же, окруженные клетками неврилеммы, но не покрытые миелиновой оболочкой, называют немиелинизированными (безмякотными). Миелинизированные волокна имеются только у позвоночных животных. Миелиновая оболочка формируется из плазматической мембраны шванновских клеток, которая накручивается на аксон, как моток ленты, образуя слой за слоем. Участок аксона, где две смежные шванновские клетки соприкасаются друг с другом, называется перехватом Ранвье. В ЦНС миелиновая оболочка нервных волокон образована особым типом глиальных клеток – олигодендроглией. Каждая из этих клеток формирует миелиновую оболочку сразу нескольких аксонов. Немиелинизированные волокна в ЦНС лишены оболочки из каких-либо специальных клеток.
Миелиновая оболочка ускоряет проведение нервных импульсов, которые «перескакивают» от одного перехвата Ранвье к другому, используя эту оболочку как связующий электрический кабель. Скорость проведения импульсов возрастает с утолщением миелиновой оболочки и колеблется от 2 м/с (по немиелинизированным волокнам) до 120 м/с (по волокнам, особенно богатым миелином). Для сравнения: скорость распространения электрического тока по металлическим проводам – от 300 до 3000 км/с.
Cинапс. Каждый нейрон имеет специализированную связь с мышцами, железами или другими нейронами. Зона функционального контакта двух нейронов называется синапсом. Межнейронные синапсы образуются между различными частями двух нервных клеток: между аксоном и дендритом, между аксоном и телом клетки, между дендритом и дендритом, между аксоном и аксоном. Нейрон, посылающий импульс к синапсу, называют пресинаптическим; нейрон, получающий импульс, – постсинаптическим. Синаптическое пространство имеет форму щели. Нервный импульс, распространяющийся по мембране пресинаптического нейрона, достигает синапса и стимулирует высвобождение особого вещества – нейромедиатора – в узкую синаптическую щель. Молекулы нейромедиатора диффундируют через щель и связываются с рецепторами на мембране постсинаптического нейрона. Если нейромедиатор стимулирует постсинаптический нейрон, его действие называют возбуждающим, если подавляет – тормозным. Результат суммации сотен и тысяч возбуждающих и тормозных импульсов, одновременно стекающихся к нейрону, – основной фактор, определяющий, будет ли этот постсинаптический нейрон генерировать нервный импульс в данный момент.
У ряда животных (например, у лангуста) между нейронами определенных нервов устанавливается особо тесная связь с формированием либо необычно узкого синапса, т.н. щелевого соединения, либо, если нейроны непосредственно контактируют друг с другом, плотного соединения. Нервные импульсы проходят через эти соединения не при участии нейромедиатора, а непосредственно, путем электрической передачи. Немногочисленные плотные соединения нейронов имеются и у млекопитающих, в том числе у человека.
Регенерация. К моменту рождения человека все его нейроны и бльшая часть межнейронных связей уже сформированы, и в дальнейшем образуются лишь единичные новые нейроны. Когда нейрон погибает, он не заменяется новым. Однако оставшиеся могут брать на себя функции утраченной клетки, образуя новые отростки, которые формируют синапсы с теми нейронами, мышцами или железами, с которыми был связан утраченный нейрон.
Перерезанные или поврежденные волокна нейронов ПНС, окруженные неврилеммой, могут регенерировать, если тело клетки осталось сохранным. Ниже места перерезки неврилемма сохраняется в виде трубчатой структуры, и та часть аксона, которая осталась связанной с телом клетки, растет по этой трубке, пока не достигнет нервного окончания. Таким образом восстанавливается функция поврежденного нейрона. Аксоны в ЦНС, не окруженные неврилеммой, по-видимому, не способны вновь прорастать к месту прежнего окончания. Однако многие нейроны ЦНС могут давать новые короткие отростки – ответвления аксонов и дендритов, формирующие новые синапсы.
ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА
ЦНС состоит из головного и спинного мозга и их защитных оболочек. Самой наружной является твердая мозговая оболочка, под ней расположена паутинная (арахноидальная), а затем мягкая мозговая оболочка, сращенная с поверхностью мозга. Между мягкой и паутинной оболочками находится подпаутинное (субарахноидальное) пространство, содержащее спинномозговую (цереброспинальную) жидкость, в которой как головной, так и спинной мозг буквально плавают. Действие выталкивающей силы жидкости приводит к тому, что, например, головной мозг взрослого человека, имеющий массу в среднем 1500 г, внутри черепа реально весит 50–100 г. Мозговые оболочки и спинномозговая жидкость играют также роль амортизаторов, смягчающих всевозможные удары и толчки, которые испытывает тело и которые могли бы привести к повреждению нервной системы.
ЦНС образована из серого и белого вещества. Серое вещество составляют тела клеток, дендриты и немиелинизированные аксоны, организованные в комплексы, которые включают бесчисленное множество синапсов и служат центрами обработки информации, обеспечивая многие функции нервной системы. Белое вещество состоит из миелинизированных и немиелинизированных аксонов, выполняющих роль проводников, передающих импульсы из одного центра в другой. В состав серого и белого вещества входят также клетки глии.
Нейроны ЦНС образуют множество цепей, которые выполняют две основные функции: обеспечивают рефлекторную деятельность, а также сложную обработку информации в высших мозговых центрах. Эти высшие центры, например зрительная зона коры (зрительная кора), получают входящую информацию, перерабатывают ее и передают ответный сигнал по аксонам.
Результат деятельности нервной системы – та или иная активность, в основе которой лежит сокращение или расслабление мышц либо секреция или прекращение секреции желез. Именно с работой мышц и желез связан любой способ нашего самовыражения.
Поступающая сенсорная информация подвергается обработке, проходя последовательность центров, связанных длинными аксонами, которые образуют специфические проводящие пути, например болевые, зрительные, слуховые. Чувствительные (восходящие) проводящие пути идут в восходящем направлении к центрам головного мозга. Двигательные (нисходящие) пути связывают головной мозг с двигательными нейронами черепно-мозговых и спинномозговых нервов.
Проводящие пути обычно организованы таким образом, что информация (например, болевая или тактильная) от правой половины тела поступает в левую часть мозга и наоборот. Это правило распространяется и на нисходящие двигательные пути: правая половина мозга управляет движениями левой половины тела, а левая половина – правой. Из этого общего правила, однако, есть несколько исключений.
Головной мозг состоит из трех основных структур: больших полушарий, мозжечка и ствола.
Большие полушария – самая крупная часть мозга – содержат высшие нервные центры, составляющие основу сознания, интеллекта, личности, речи, понимания. В каждом из больших полушарий выделяют следующие образования: лежащие в глубине обособленные скопления (ядра) серого вещества, которые содержат многие важные центры; расположенный над ними крупный массив белого вещества; покрывающий полушария снаружи толстый слой серого вещества с многочисленными извилинами, составляющий кору головного мозга.
Мозжечок тоже состоит из расположенного в глубине серого вещества, промежуточного массива белого вещества и наружного толстого слоя серого вещества, образующего множество извилин. Мозжечок обеспечивает главным образом координацию движений.
Ствол мозга образован массой серого и белого вещества, не разделенной на слои. Ствол тесно связан с большими полушариями, мозжечком и спинным мозгом и содержит многочисленные центры чувствительных и двигательных проводящих путей. Первые две пары черепно-мозговых нервов отходят от больших полушарий, остальные же десять пар – от ствола. Ствол регулирует такие жизненно важные функции, как дыхание и кровообращение. См. также ГОЛОВНОЙ МОЗГ ЧЕЛОВЕКА.
Спинной мозг. Находящийся внутри позвоночного столба и защищенный его костной тканью спинной мозг имеет цилиндрическую форму и покрыт тремя оболочками. На поперечном срезе серое вещество имеет форму буквы Н или бабочки. Серое вещество окружено белым веществом. Чувствительные волокна спинномозговых нервов заканчиваются в дорсальных (задних) отделах серого вещества – задних рогах (на концах Н, обращенных к спине). Тела двигательных нейронов спинномозговых нервов расположены в вентральных (передних) отделах серого вещества – передних рогах (на концах Н, удаленных от спины). В белом веществе проходят восходящие чувствительные проводящие пути, заканчивающиеся в сером веществе спинного мозга, и нисходящие двигательные пути, идущие от серого вещества. Кроме того, многие волокна в белом веществе связывают различные отделы серого вещества спинного мозга.
ПЕРИФЕРИЧЕСКАЯ НЕРВНАЯ СИСТЕМА
ПНС обеспечивает двустороннюю связь центральных отделов нервной системы с органами и системами организма. Анатомически ПНС представлена черепно-мозговыми (черепными) и спинномозговыми нервами, а также относительно автономной энтеральной нервной системой, локализованной в стенке кишечника.
Все черепно-мозговые нервы (12 пар) разделяют на двигательные, чувствительные либо смешанные. Двигательные нервы начинаются в двигательных ядрах ствола, образованных телами самих моторных нейронов, а чувствительные нервы формируются из волокон тех нейронов, тела которых лежат в ганглиях за пределами мозга.
От спинного мозга отходит 31 пара спинномозговых нервов: 8 пар шейных, 12 грудных, 5 поясничных, 5 крестцовых и 1 копчиковая. Их обозначают в соответствии с положением позвонков, прилежащих к межпозвоночным отверстиям, из которых выходят данные нервы. Каждый спинномозговой нерв имеет передний и задний корешки, которые, сливаясь, образуют сам нерв. Задний корешок содержит чувствительные волокна; он тесно связан со спинальным ганглием (ганглием заднего корешка), состоящим из тел нейронов, аксоны которых образуют эти волокна. Передний корешок состоит из двигательных волокон, образованных нейронами, клеточные тела которых лежат в спинном мозге.
ЧЕРЕПНО-МОЗГОВЫЕ НЕРВЫ
Номер
Название
Функциональная характеристика
Иннервируемые структуры
I Обонятельный Специальный сенсорный (обоняние) Обонятельный эпителий полости носа
II Зрительный Специальный сенсорный (зрение) Палочки и колбочки сетчатки
III Глазодвигательный Моторный Большинство наружных мышц глаза
Гладкие мышцы радужной оболочки и хрусталика
IV Блоковый Моторный Верхняя косая мышца глаза
V Тройничный Общесенсорный
Моторный Кожа лица, слизистая оболочка носа и рта
Жевательные мышцы
VI Отводящий Моторный Наружная прямая мышца глаза
VII Лицевой Моторный
Висцеромоторный
Специальный сенсорный Мимическая мускулатура
Слюнные железы
Вкусовые рецепторы языка
VIII Преддверно-улитковый Специальный сенсорный
Вестибулярный (равновесие) Слуховой (слух) Полукружные каналы и пятна (рецепторные участки) лабиринта
Слуховой орган в улитке (внутреннее ухо)
IX Языкоглоточный Моторный
Висцеромоторный
Висцеросенсорный Мышцы задней стенки глотки
Слюнные железы
Рецепторы вкусовой и общей чувствительности в задней
части полости рта
X Блуждающий Моторный
Висцеромоторный
Висцеросенсорный
Общесенсорный Мышцы гортани и глотки
Мышца сердца, гладкая мускулатура, железы легких,
бронхов, желудка и кишечника, в том числе пищеварительные железы
Рецепторы крупных кровеносных сосудов, легких, пищевода, желудка и кишечника
Наружное ухо
XI Добавочный Моторный Грудино-ключично-сосцевидная и трапециевидная мышцы
XII Подъязычный Моторный Мышцы языка
Определения «висцеромоторный», «висцеросенсорный» указывают на связь соответствующего нерва с внутренними (висцеральными) органами.
ВЕГЕТАТИВНАЯ НЕРВНАЯ СИСТЕМА
Вегетативная, или автономная, нервная система регулирует деятельность непроизвольных мышц, сердечной мышцы и различных желез. Ее структуры расположены как в центральной нервной системе, так и в периферической. Деятельность вегетативной нервной системы направлена на поддержание гомеостаза, т.е. относительно стабильного состояния внутренней среды организма, например постоянной температуры тела или кровяного давления, соответствующего потребностям организма.
Сигналы от ЦНС поступают к рабочим (эффекторным) органам через пары последовательно соединенных нейронов. Тела нейронов первого уровня располагаются в ЦНС, а их аксоны оканчиваются в вегетативных ганглиях, лежащих за пределами ЦНС, и здесь образуют синапсы с телами нейронов второго уровня, аксоны которых непосредственно контактируют с эффекторными органами. Первые нейроны называют преганглионарными, вторые – постганглионарными.
В той части вегетативной нервной системы, которую называют симпатической, тела преганглионарных нейронов расположены в сером веществе грудного (торакального) и поясничного (люмбального) отделов спинного мозга. Поэтому симпатическую систему называют также торако-люмбальной. Аксоны ее преганглионарных нейронов оканчиваются и образуют синапсы с постганглионарными нейронами в ганглиях, расположенных цепочкой вдоль позвоночника. Аксоны постганглионарных нейронов контактируют с эффекторными органами. Окончания постганглионарных волокон выделяют в качестве нейромедиатора норадреналин (вещество, близкое к адреналину), и потому симпатическая система определяется также как адренергическая.
Симпатическую систему дополняет парасимпатическая нервная система. Тела ее преганглинарных нейронов расположены в стволе мозга (интракраниально, т.е. внутри черепа) и крестцовом (сакральном) отделе спинного мозга. Поэтому парасимпатическую систему называют также кранио-сакральной. Аксоны преганглионарных парасимпатических нейронов оканчиваются и образуют синапсы с постганглионарными нейронами в ганглиях, расположенных вблизи рабочих органов. Окончания постганглионарных парасимпатических волокон выделяют нейромедиатор ацетилхолин, на основании чего парасимпатическую систему называют также холинергической.
Как правило, симпатическая система стимулирует те процессы, которые направлены на мобилизацию сил организма в экстремальных ситуациях или в условиях стресса. Парасимпатическая же система способствует накоплению или восстановлению энергетических ресурсов организма.
Реакции симпатической системы сопровождаются расходом энергетических ресурсов, повышением частоты и силы сердечных сокращений, возрастания кровяного давления и содержания сахара в крови, а также усилением притока крови к скелетным мышцам за счет уменьшения ее притока к внутренним органам и коже. Все эти изменения характерны для реакции «испуга, бегства или борьбы». Парасимпатическая система, наоборот, уменьшает частоту и силу сердечных сокращений, снижает кровяное давление, стимулирует пищеварительную систему.
Симпатическая и парасимпатическая системы действуют координированно, и их нельзя рассматривать как антагонистические. Они сообща поддерживают функционирование внутренних органов и тканей на уровне, соответствующем интенсивности стресса и эмоциональному состоянию человека. Обе системы функционируют непрерывно, но уровни их активности колеблются в зависимости от ситуации.
РЕФЛЕКСЫ
Когда на рецептор сенсорного нейрона воздействует адекватный стимул, в нем возникает залп импульсов, запускающих ответное действие, именуемое рефлекторным актом (рефлексом). Рефлексы лежат в основе большинства проявлений жизнедеятельности нашего организма. Рефлекторный акт осуществляет т.н. рефлекторная дуга; этим термином обозначают путь передачи нервных импульсов от точки исходной стимуляции на теле до органа, совершающего ответное действие.
Дуга рефлекса, вызывающего сокращение скелетной мышцы, состоит по меньшей мере из двух нейронов: чувствительного, тело которого расположено в ганглии, а аксон образует синапс с нейронами спинного мозга или ствола мозга, и двигательного (нижнего, или периферического, мотонейрона), тело которого находится в сером веществе, а аксон оканчивается двигательной концевой пластинкой на скелетных мышечных волокнах.
В рефлекторную дугу между чувствительным и двигательным нейронами может включаться и третий, промежуточный, нейрон, расположенный в сером веществе. Дуги многих рефлексов содержат два и более промежуточных нейрона.
Рефлекторные действия осуществляются непроизвольно, многие из них не осознаются. Коленный рефлекс, например, вызывается постукиванием по сухожилию четырехглавой мышцы в области колена. Это двухнейронный рефлекс, его рефлекторная дуга состоит из мышечных веретен (мышечных рецепторов), чувствительного нейрона, периферического двигательного нейрона и мышцы. Другой пример – рефлекторное отдергивание руки от горячего предмета: дуга этого рефлекса включает чувствительный нейрон, один или несколько промежуточных нейронов в сером веществе спинного мозга, периферический двигательный нейрон и мышцу.
Многие рефлекторные акты имеют значительно более сложный механизм. Так называемые межсегментарные рефлексы складываются из комбинаций более простых рефлексов, в осуществлении которых принимают участие многие сегменты спинного мозга. Благодаря таким рефлексам обеспечивается, например, координация движений рук и ног при ходьбе. К сложным рефлексам, замыкающимся в головном мозге, относятся движения, связанные с поддержанием равновесия. Висцеральные рефлексы, т.е. рефлекторные реакции внутренних органов, опосредуются вегетативной нервной системой; они обеспечивают опорожнение мочевого пузыря и многие процессы в пищеварительной системе. См. также РЕФЛЕКС.
ЗАБОЛЕВАНИЯ НЕРВНОЙ СИСТЕМЫ
Поражения нервной системы возникают при органических заболеваниях или травмах головного и спинного мозга, мозговых оболочек, периферических нервов. Диагностика и лечение заболеваний и травм нервной системы составляют предмет особой отрасли медицины – неврологии. Психиатрия и клиническая психология занимаются главным образом психическими расстройствами. Сферы этих медицинских дисциплин часто перекрываются. См. отдельные заболевания нервной системы: АЛЬЦГЕЙМЕРА БОЛЕЗНЬ; ИНСУЛЬТ; МЕНИНГИТ; НЕВРИТ; ПАРАЛИЧ; ПАРКИНСОНА БОЛЕЗНЬ; ПОЛИОМИЕЛИТ; РАССЕЯННЫЙ СКЛЕРОЗ; СТОЛБНЯК; ДЕТСКИЙ ЦЕРЕБРАЛЬНЫЙ ПАРАЛИЧ; ХОРЕЯ; ЭНЦЕФАЛИТ; ЭПИЛЕПСИЯ. См. также АНАТОМИЯ СРАВНИТЕЛЬНАЯ; АНАТОМИЯ ЧЕЛОВЕКА.
ВОПРОС №10
15.1. Морфофункциональная организация коры больших полушарий
Полушария конечного мозга состоят из белого вещества, покрытого снаружи серым, или корой, толщина которой в различных отделах больших полушарий колеблется от 1,3 до 4,5 мм. Кора представляет собой филогенетически наиболее молодой и вместе с тем сложный отдел мозга, предназначенный для обработки сенсорной информации, формирования двигательных команд и интеграции сложных форм поведения. Бурный рост неокортекса у высших позвоночных в ограниченном объеме черепа сопровождается образованием многочисленных складок, увеличивающих общую площадь коры, которая у человека составляет 2200 см2.
На этом пространстве сконцентрировано 109-1010 нейронов и еще большее количество глиальных клеток, выполняющих ионо-регулирующую и трофическую функции. Образующие кору нейроны по своей геометрии и функции подразделяются на несколько групп. Одну группу составляют варьирующие по размеру пирамидные клетки. Они ориентированы вертикально по отношению к поверхности коры и имеют тело треугольной формы . От тела пирамидной клетки вверх отходит длинный Т-образно ветвящийся апикальный дендрит, а вниз от основания нейрона - аксон, который либо покидает кору в составе нисходящих путей, либо направляется к другим зонам коры. Апикальные и более короткие базальные дендриты пирамидных клеток густо усеяны мелкими (до 3 мкм) выростами - шипиками, каждый из которых представляет собой область синаптического контакта.
Другая группа корковых нейронов представлена более мелкими звездчатыми клетками. Эти клетки имеют короткие сильно ветвящиеся дендриты и аксоны, формирующие внутрикорковые связи. Дендриты звездчатых клеток также могут быть снабжены шипиками, которые в процессе онтогенетического развития у человека появляются только к моменту рождения.
Наконец, третья группа корковых нейронов включает в себя веретеновидные клетки, имеющие длинный аксон, который ориентирован в горизонтальном или вертикальном направлении. В связи с тем ,что тела и отростки описанных выше нейронов имеют упорядоченное расположение, кора построена по экранному принципу и у млекопитающих в типичном случае состоит из шести горизонтальных слоев.
Самый наружный молекулярный слой слагается из густого сплетения нервных волокон, лежащих параллельно поверхности корковых извилин. Основную массу этих волокон составляют ветвящиеся апикальные дендриты пирамидных клеток нижележащих слоев. Сюда же в наружный слой приходят афферентные таламокортикальные волокна от неспецифических ядер таламуса, регулирующих уровень возбудимости корковых нейронов.
Второй слой - наружный зернистый - состоит из большого количества мелких звездчатых клеток, которые в вентральной части слоя дополняются малыми пирамидными клетками.
Третий слой - наружный пирамидный - формируется из пирамидных клеток средней величины. Функционально второй и третий слои коры объедиияют нейроны, отростки которых обеспечивают кортико-кортикаль.ные ассоциативные связи.
Четвертый слой - внутренний зернистый - содержит множество звездчатых юлеток (клеток-зерен), обусловливающих его гранулярную структуру. В этом слое преимущественно оканчиваются афферентные таламокортикальные волокна, идущие от специфических (проекционных) ядер таламуса.
Пятый слой - внутренний пирамидный - образован крупными пирамидными клегками. Наиболее крупные пирамидные нейроны - гигантские клеткш Беца - встречаются в прецентральной извилине, занятой моторной зоной коры больших полушарий. Аксоны этих эфферентных корковых нейронов формируют кортикоспинальный (пирамидный) и к:ортикобульбарные тракты, участвующие в координации целенаправленных двигательных актов и позы.
И наконец, шестой слой - полиморфный, или слой веретеновидных клеток, переходящий непосредственно в белое вещество больших полушарий. Этот слой содержит тела нейронов, чьи отростки формируют "сортикоталамические пути.
Такой шестислойный план строения характерен для всего неокортекса. Однако выраженность отдельных слоев в различных областях коры не одинакова. Учитывая эту особенность, К. Бродман по гистологическим признакам, в частности по плотности расположения и форме нейронов, разделил всю кору на 50 цитоархитектонических полей (рис.15.1.). Позднее были разработаны функциональные принципы классификации различных зон коры. При этом оказалось, что зоны, выделенные на основании их функциональных и нейрохимических особенностей, в известной степени соответствуют цитоархитектоническому разделению коры на поля.
Так, например, при сравнении наиболее изученных сенсорных и моторных зон коры оказалось, что в первых наружный пирамидный слой (3) выражен слабо и доминируют зернистые слои (2, 4), где оканчиваются сенсорные афференты (гранулярная кора). И напротив, в моторных зонах коры зернистые слои развиты плохо (агранулярная кора), а пирамидные слои превалируют.
Таким образом, функциональная специализация накладывает определенный отпечаток на структуру сенсорных и моторных зон коры, и выделение этих областей по различным системам классификации не случайно.
ВОПРОС№11
Конечный мозг, telencephalon, представлен двумя полушариями, hemispheria cerebri. В состав каждого полушария входят: плащ, или мантия, pallium, обонятельный мозг, rhinencephalon, и базальные ядра. Остатком первоначальных полостей обоих пузырей конечного мозга являются боковые желудочки, ventriculi laterales.
Передний мозг, из которого выделяется конечный, вначале возникает в связи с обонятельным рецептором (обонятельный мозг), а затем он становится органом управления поведением животного, причем в нем возникают центры инстинктивного поведения, основанного на видовых реакциях (безусловные рефлексы), - подкорковые ядра и центры индивидуального поведения, основанного на индивидуальном опыте (условные рефлексы), - кора большого мозга. Соответственно этому в конечном мозге различают в порядке исторического развития следующие группы центров:
Обонятельный мозг, rhinencephalon, - самая древняя и вместе с тем самая меньшая часть, расположенная вентрально.
Базальные, или центральные, ядра полушарий, «подкорка», - старая часть конечного мозга, paleencephalon, скрытая в глубине.
Серое вещество коры, cortex, - самая молодая часть, neencephalon, и вместе с тем самая большая часть, покрывающая остальные как бы плащом, откуда и ее название «плащ», или мантия, pallium.
Кроме отмеченных для животных двух форм поведения, у человека возникает третья форма - коллективное поведение, основанное на опыте человеческого коллектива, создающегося в процессе трудовой деятельности человека и общения людей с помощью речи. Эта форма поведения связана с развитием самых молодых поверхностных слоев мозговой коры, составляющих материальный субстрат так называемой второй сигнальной (словесной) системы действительности (И. П. Павлов). Так как в процессе эволюции из всех отделов центральной нервной системы быстрее и сильнее всего растет конечный мозг, то он у человека становится самой большой частью головного мозга и приобретает вид двух объемистых полушарий - правого и левого, hemispheria dextrum et sinistrum.
В глубине продольной щели мозга оба полушария соединены между собой толстой горизонтальной пластинкой - мозолистым телом, corpus callosum, которое состоит из нервных волокон, идущих поперечно из одного полушария в другое. В мозолистом теле различают передний загибающийся книзу конец, или колено, genu corporis callosi, среднюю часть, тело, truncus corporis callosi, и затем задний конец, утолщенный в форме валика, splenium corporis callosi. Все эти части хорошо видны на сагиттальном разрезе мозга между обоими полушариями. Колено мозолистого тела, загибаясь книзу, заостряется и образует клюв, rostrum corporis callosi, который переходит в тонкую пластинку, lamina rostralis, продолжающуюся в свою очередь в lamina terminalis.
Под мозолистым телом находится так называемый свод, fornix, представляющий два дугообразных белых тяжа, которые в средней своей части, corpus fornicis, соединены между собой, а спереди и сзади расходятся, образуя впереди столбы свода, columnae fornicis, позади - ножки свода, crura fornicis. Crura fornicis, направляясь назад, спускаются в нижние рога боковых желудочков и переходят там в fimbria hippocampi. Между crura fornicis под splenium corporis callosi протягиваются поперечные пучки нервных волокон, образующие commissura fornicis. Передние концы свода, columnae fornicis, продолжаются вниз до основания мозга, где оканчиваются в corpora mamillaria, проходя через серое вещество hypothalamus. Columnae fornicis ограничивают лежащие позади них межжелудочковые отверстия, соединяющие III желудочек с боковыми желудочками.
Впереди столбов свода находится передняя спайка, commissura anterior, имеющая вид белой поперечной перекладины, состоящей из нервных волокон. Между передней частью свода и genu corporis callosi натянута тонкая вертикальная пластинка мозговой ткани - прозрачная перегородка, septum pellucidum, в толще которой находится небольшая щелевидная полость, cavum septi pellucidi.
ВОПРОС№12
Физиология желез внутренней секреции. Роль обратной связи в механизме регуляции в функционировании желез внутренней секреции
Регуляция внутренней секреции гипофиза: Внутренняя секреция гипофиза, регулирующего функции ряда других эндокринных желез, в свою очередь находится в зависимости от функционирования этих желез. Так, недостаток в крови андрогенов и эстрогенов, глюкокортикоидов и тиротоксина стимулирует продукцию соответственно гонадотропного, адренокортикотропного и тиротропного гормонов гипофиза. Наоборот, избыток гормонов половых желез, надпочечников и щитовидной железы угнетает продукцию соответствующих тропных гормонов гипофиза. Таким образом, гипофиз включен в систему нейрогуморальной регуляции, работающей по принципу обратной связи, автоматически поддерживающей продукцию гормонов соответствующих желез на необходимом уровне.
Большое значение в регуляции функций передней доли гипофиза имеют особенности ее кровоснабжения, а именно то, что кровь, оттекающая от капилляров гипоталамической области, поступает в так называемы портальные сосуды гипофиза и омывает его клетки. В гипоталамической области вокруг этих капилляров существует нервная сеть, состоящая из отростков нервных клеток, формирующих на капиллярах своеобразные нейрокапиллярные синапсы. Через эти образования продукты нейросекреции клеток гипоталамуса поступают в кровь и с ее током переносятся к передней доле гипофиза, изменяя их функции.
Механизм обратной связи, с помощью которого уровень гормонов надпочечника и половых желез в крови регулирует интенсивность выделения адренокортикотропного и гонадотропных гормонов гипофиза, осуществляется через ядра гипоталамической области. Действие гормонов половых желез непосредственно на клетки передней доли гипофиза не вызывает угнетения выработки гонадотропинов; в то же время действие гормонов этих желез на гипоталамическую область обуславливает указанный эффект. Последний наблюдается лишь в том случае. Когда не нарушены связи гипофиза с гипоталамусом; он исчезает, если эти связи нарушаются. В отличие о этого избыточное содержание тироксина в крови, например при его введении, не угнетает образование тиреотропинвысвобождающего фактора клетками гипоталамуса, но блокирует действие этого вещества на аденогипофиз, вследствие чего уменьшается выделение тиротропина.
Нейронами гипоталамуса, продуцирующим гормоны, присущи функции одновременно секреторных и нервных клеток. Это находит свое выражение в том, что в процессе секреции гормонов нервными клетками в них возникают потенциалы действия, аналогичные наблюдавшимся при возникновении и распространении процесса возбуждения. Генерированием подобных потенциалов действия секреция железистых клеток никогда не сопровождается. железа внутренний секреция гормон
Нейросекреторная клетка способна осуществлять регулирующее влияние не только посылая другим нейронам обычные импульсы, но и выделяя специфические вещества – нейрогормоны. Процессы нервной и гуморальной регуляции здесь объединяются в одной клетке.
При поступлении к передней доле гипофиза продуктов нейросекреции гипоталамуса гипофиз усиливает выделение ряда гормонов. В гипоталамусе образуются и поступают к аденогипофизу вещества, получившие название высвобождающих факторов: кортикотропинвысвобождающий, тиреотропинвысвобождающий, фолликулостимулинвысвгобождающий, лютеинвысвобождающий, соматропинвысвобождающий. Они способствуют образованию и выделению АКТГ, гонадотропинов, тиротропина, соматотропина.
Регуляция секреции щитовидной железы: в железе синтезируются йодированные соединения: монойодтирозин и дийодтирозин. Они образуются в клетках фолликулов железы комплексное соединение с белком – тироглобулин, который может сохраняться в фолликулах в течении нескольких месяцев. При его гидролизе протеазой, вырабатываемой клетками железы, высвобождаются активные гормоны – трийодтиронин и тетрайодтиронин или тироксин. Трийодтиронин и тироксин переходят в кровь, где связываются с белками плазмы крови тироксинсвязывающим глобулином(ТСГ), тироксинсвязывающим преальбумином(ТСПА) и альбумином, являющимися переносчиками гормонов. В тканях эти комплексы расщепляются, высвобождая тироксин и трийодтиронин.
Тироксин, трийодтиронин и тирйодтироуксусная кислота резко усиливают окислительные процессы в митохондриях, что ведет к усилению энергетического обмена клетки.
Регуляция секреции околощитовидных желез: паратгормон активирует функцию остекластов, разрушающих костную ткань. Усиливает всасывание кальция в кишечнике и процессы его реабсорбции в канальцах почки.
Регуляция внутренней секреции поджелудочной железы: образование инсулина регулируется уровнем глюкозы в крови. Увеличение содержания глюкозы в крови после приема ее больших количеств, а так же при гипергликемии, связанной с напряженной физической работой и эмоциями, повышает секрецию инсулина. Наоборот, понижение уровня глюкозы в крови тормозит секрецию инсулина, но повышает секрецию глюкагона. Глюкоза влияет на - и в – клетки поджелудочной железы непосредственно.
Инсулин разрушается ферментом инсулиназой, находящейся в печени и скелетных мышцах.
Уровень глюкозы в крови, помимо инсулина и глюкагона, регулируется соматотропным гормоном гипофиза, а также гормонами надпочечника.
Регуляция внутренней секреции надпочечников: эффекты, возникающие при действии адреналина, напоминают сдвиги, вызываемые возбуждением симпатической нервной системы. Эта система мобилизует энергетические ресурсы с тем, чтобы организм мог вынести большие напряжения и справиться с чрезвычайными обстоятельствами. В таких условиях всегда вначале возникает возбуждение симпатической нервной системы, которое среди прочих эффектов приводит к выбросу в кровь больших количеств адреналина. Адреналин гуморальным путем поддерживает сдвиги, вызванные возбуждение симпатической нервной системы, то есть длительно поддерживает перестройку функций, необходимую при чрезвычайных ситуациях.
Количество минералокортикойдов, выделяемых надпочечниками, находится в прямой зависимости от содержания натрия и калия в организме. Повышенное количество натрия в крови, перфузирующей изолированный надпочечник, тормозит секрецию альдостерона. Недостаток натрия в крови, наоборот, вызывает повышение секреции альдостерона. Ионы натрия регулируют интенсивность функции клеток клубочковой зоны надпочечников непосредственно. Ионы калия также действуют непосредственно на клетки клубочковой зоны надпочечников. Их влияние противоположно влиянию ионов натрия, а действие выражено слабее. АКТГ гипофиза, влияя на эту зону, также увеличивает секрецию альдостерона, но эффект этот выражен слабее нежели влияние АКТГ на выработку глюкокорткойдов.
Глюкокортикойды оказывают влияние на углеводный, белковый и жировой обмен. Повышают уровень сахара в крови вследствие стимуляции образования глюкозы в печени.
Регуляция внутренней секреции половых желез: деятельность половых желез регулируется нервной системой и гормонами гипофиза и эпифиза. Нервная регуляция половых желез осуществляется путем рефлекторного изменения внутренней секреции гипофиза. В регуляции деятельности половых желез решающее значение имеют гонадотропные гормоны или гонадотропины, образуемые передней долей гипофиза.
ОБЩЕЕ ПОНЯТИЕ О ГОРМОНАХ
Учение о гормонах выделено в самостоятельную науку – эндокринологию. Современная эндокринология изучает химическую структуру гормонов, образующихся в железах внутренней секреции, зависимость между структурой и функцией гормонов, молекулярные механизмы действия, а также физиологию и патологию эндокринной системы . Учреждены специализированные научно-исследовательские институты, лаборатории, издаются научные журналы; созываются международные конференции, симпозиумы и конгрессы, посвященные проблемам эндокринологии. В наши дни эндокринология превратилась в одну из самых бурно развивающихся разделов биологической науки. Она имеет свои цели и задачи, специфические методологические подходы и методы исследования. В нашей стране головным научным учреждением, объединяющим исследования по этим проблемам, является Эндокринологический научный центр РАМН.
Гормоны относятся к биологически активным веществам, определяющим в известной степени состояние физиологических функций целостного организма, макро- и микроструктуру органов и тканей и скорость протекания биохимических процессов. Таким образом, гормоны – вещества органической природы, вырабатывающиеся в специализированных клетках желез внутренней секреции, поступающие в кровь и оказывающие регулирующее влияние на обмен веществ и физиологические функции. В это определение необходимо внести соответствующие коррективы в связи с обнаружением типичных гормонов млекопитающих у одноклеточных (например, инсулин у микроорганизмов) или возможностью синтеза гормонов соматическими клетками в культуре ткани (например, лимфоцитами под действием факторов роста).
Одной из удивительных особенностей живых организмов является их способность сохранять постоянство внутренней среды – гомеостаз – при помощи механизмов саморегуляции, в которых одно из главных мест принадлежит гормонам. У высших животных координированное протекание всех биологических процессов не только в целостном организме, но и в микропространстве отдельной клетки и даже в отдельном субклеточном образовании (митохондрии, микросомы) определяется нейрогуморальными механизмами, сложившимися в процессе эволюции. При помощи этих механизмов организм воспринимает разнообразные сигналы об изменениях в окружающей и внутренней средах и тонко регулирует интенсивность процессов обмена. В регуляции этих процессов, в осуществлении последовательности протекания множества реакций гормоны занимают промежуточное звено между нервной системой и действием ферментов, которые непосредственно регулируют скорость обмена веществ. В настоящее время получены доказательства, что гормоны вызывают либо быструю (срочную) ответную реакцию, повышая активность предобразованных, имеющихся в тканях ферментов (это свойственно гормонам пептидной и белковой природы), либо, что более характерно, например, для стероидных гормонов, медленную реакцию, связанную с синтезом ферментов de novo. Как будет показано далее, стероидные гормоны оказывают влияние на генетический аппарат клетки, вызывая синтез соответствующей мРНК, которая, поступив в рибосому, служит матрицей для синтеза молекулы белка – фермента. Предполагают, что и другие гормоны (имеющие белковую природу) опосредованно через фосфорилирование негистоновых белков могут оказывать влияние на гены, контролируя тем самым скорость синтеза соответствующих ферментов. Таким образом, любые нарушения синтеза или распада гормонов, вызванные разнообразными причинными факторами, включая заболевания эндокринных желез (состояние гипо- или гиперфункции) или изменения структуры и функций рецепторов и внутриклеточных посредников, приводят к изменению нормального синтеза ферментов и соответственно к нарушению метаболизма.
Зарождение науки об эндокринных железах и гормонах относится к 1855 г., когда Т. Аддисон впервые описал бронзовую болезнь, связанную с поражением надпочечников и сопровождающуюся специфической пигментацией кожных покровов. Клод Бернар ввел понятие о железах внутренней секреции, т.е. органах, выделяющих секрет непосредственно в кровь. Позже Ш. Броун-Секар показал, что недостаточность функции желез внутренней секреции вызывает развитие болезней, а экстракты, полученные из этих желез, оказывают хороший лечебный эффект. В настоящее время имеются бесспорные доказательства, что почти все болезни желез внутренней секреции (тиреотоксикоз, сахарный диабет и др.) развиваются в результате нарушения молекулярных механизмов регуляции процессов обмена, вызванных недостаточным или, наоборот, избыточным синтезом соответствующих гормонов в организме человека.
Термин «гормон» (от греч. hormao – побуждаю) был введен в 1905 г. У. Бейлиссом и Э. Старлингом при изучении открытого ими в 1902 г. гормона секретина, вырабатывающегося в двенадцатиперстной кишке и стимулирующего выработку сока поджелудочной железы и отделение желчи. К настоящему времени открыто более сотни различных веществ, наделенных гормональной активностью, синтезирующихся в железах внутренней секреции и регулирующих процессы обмена веществ. Установлены специфические особенности биологического действия гормонов: а) гормоны проявляют свое биологическое действие в ничтожно малых концентрациях (от 10–6 до 10–12 М); б) гормональный эффект реализуется через белковые рецепторы и внутриклеточные вторичные посредники (мессендже-ры); в) не являясь ни ферментами, ни коферментами, гормоны в то же время осуществляют свое действие путем увеличения скорости синтеза ферментов de novo или изменения скорости ферментативного катализа; г) действие гормонов в целостном организме определяется в известной степени контролирующим влиянием ЦНС; д) железы внутренней секреции и продуцируемые ими гормоны составляют единую систему, тесно связанную при помощи механизмов прямой и обратной связей.
Под влиянием разнообразных внешних и внутренних раздражителей возникают импульсы в специализированных, весьма чувствительных рецепторах. Импульсы затем поступают в ЦНС, оттуда в гипоталамус, где синтезируются первые биологически активные гормональные вещества, оказывающие «дистантное» действие,– так называемые рилизинг-факторы. Особенностью рилизинг-факторов является то, что они не поступают в общий ток крови, а через портальную систему сосудов достигают специфических клеток гипофиза, при этом стимулируют (или тормозят) биосинтез и выделение тропных гормонов гипофиза, которые с током крови достигают соответствующей эндокринной железы и способствуют выработке необходимого гормона. Этот гормон затем оказывает действие на специализированные органы и ткани (органы-мишени), вызывая соответствующие химические и физиологические ответные реакции целостного организма.
Наименее изученным до недавнего времени оставался последний этап этой своеобразной дуги – действие гормонов на внутриклеточный обмен. В настоящее время получены доказательства, что это действие осуществляется через так называемые гормональные рецепторы, под которыми понимают химические структуры соответствующих тканей-мишеней, содержащие высокоспецифические участки (углеводные фрагменты гликопротеинов и ганглиозидов) для связывания гормонов. Результатом подобного связывания является инициация рецепторами специфических биохимических реакций, обеспечивающих реализацию конечного эффекта соответствующего гормона. Рецепторы гормонов белковой и пептидной природы расположены на наружной поверхности клетки (на плазматической мембране), а рецепторы гормонов стероидной природы – в ядре. Общим признаком всех рецепторов независимо от локализации является наличие строго пространственного и структурного соответствия между рецептором и соответствующим гормоном.
Молекулярные механизмы передачи гормонального сигнала и роль вторичных мессенджеров (посредников) в реализации гормонального эффекта подробно изложены в конце данной главы
ВОПРОС№13
Надпочечники
Надпочечники являются эндокринными железами, располагаются на вершинах обеих почек. Правый надпочечник у человека имеет треугольную форму, а левый надпочечник - форму. Данные железы ответственны за выброс в кровь адреналина и норадреналина при стрессе, они также вырабатывают кортизол и катехоламины. Также надпочечники оказывают влияние на функции почек путем выработки альдостерона, влияющего на осмолярность в плазме крови.
Строение надпочечников
Надпочечники располагаются в забрюшинном пространстве выше почек, их общая масса составляет 7-10 г. Они окружены жировой прослойкой и почечной фасцией. Каждый надпочечник имеет двойную структуру. Он состоит из внешней коры надпочечников и внутреннего мозгового вещества, оба данных вещества участвуют в выработке гормонов. Кора надпочечников в основном вырабатывает кортизол, альдостерон и андрогены, а мозговое вещество производит адреналин и норадреналин. В отличие от прямой иннервации мозгового вещества, деятельность коры надпочечников регулируется нейроэндокринными гормонами, вырабатываемые в гипофизе, находящиеся под контролем гипоталамуса и ренин-ангиотензиновой системы.
Кора надпочечников
Кора надпочечников отвечает за выработку кортикостероидов и гормонов андрогенов. Часть гормонов вырабатывают специальные клетки коры, в том числе альдостерон, кортизол и андрогены, такие как андростендион. В нормальных условиях, при отсутствии повреждений и внешних воздействий надпочечники вырабатывают количество гормонов эквивалентное примерно 35-40 мг ацетата кортизона.
Кора надпочечников состоит из трех зон или слоев. Данная зональность отслеживается только на микроскопическом уровне и каждая зона отличается друг от друга структурными и анатомическими особенностями. Зоны кора надпочечников имеют функциональное различия, в каждой имеются различные ферменты, ввиду чего каждая зона вырабатывает разные гормоны.
Клубочковая зона - это основное место выработки минералкортикоидов (альдостерона, кортикостерона и дезоксикортикостерона), ответственных главным образом за регулирование кровяного давления. Альдостерон воздействует на дистальные извитые канальца и на собирательные канальца почек, где он приводит к увеличению реабсорбции натрия и увеличению экскреции калия и ионов водорода. Задержка натрия дает сигнал толстой кишке и потовым железам. основным стимулятором альдостерона является ангиотезин II. Ангиотезин стимулирует юкстагломерулярные клетки если кровяное давление падает ниже 90.
Пучковая зона располагается межу клубочковой и сетчатой, она отвечает за выработку глюкокортикоидов, таких как 11-дезоксикортикостерон, кортикостерон и кортизол. Кортизол является основным в этой группе гормонов, отвечает за регуляцию жиров, белков и углеводов в организме. Кроме того кортизол усиливает активность других гормонов, например глюкагона и катехоламинов. Пучковая зона коры надпочечников выделяет умеренные уровни кортизола, но могут быть и вспышки повышенного выделения в ответ на адренокортикотропный гормон из передней доли гипофиза.
Сетчатая зона - это зона наиболее внутренне расположенная по отношению к пучковой и клубочковой зоне, она вырабатывает андрогены. В основном продуктом производства данной зоны являются дегидроэпиандростерон (DHEA), DHEA сульфат (DHEA-S) и андростендион (предшественник тестостерона ).
Мозговое вещество надпочечников
Мозговое вещество является основным веществом надпочечников и окружено корой надпочечников. Мозговое вещество вырабатывает около 20% норадреналина (норадреналин) и 80% эпинефрина (адреналин). Хромаффинные клетки мозгового вещества надпочечников являются основным поставщиком в кровь адреналина, норадреналина и энкефалина, отвечающих за мобилизацию организма при появлении угрозы. Такое название клетки получили так как становятся видны при окрашивании тканей солями хрома. Для активации функции хромаффинных клеток требуется сигнал от симпатической нервной системы через преганглионарные волокна, возникающий в грудном отделе спинного мозга. Секрет мозгового вещества поступает непосредственно в кровь. Синтезу адреналина в мозговом веществе также способствует кортизол. Произведенный в коре, кортизол достигает мозгового вещества надпочечников, увеличиваю уровень выработки адреналина.
Кровоснабжение надпочечников
Кровоснабжение надпочечников и почек общее и осуществляется тремя артериями: главной надпочечниковой артерией, снабжаемой нижней диафрагмальной артерией, средней надпочечниковой артерией, снабжаемой брюшной аортой и нижней надпочечниковой артерией, снабжаемой почечной артерией.
Венозный отток надпочечников осуществляется через правую надпочечниковую вену, впадающую в нижнюю полую вену и через левую надпочечниковую вену, впадающую в левую почечную вену и нижнюю диафрагмальную вену. Надпочечниковые вены могут образовывать анастомоз с нижней диафрагмальной веной. Поскольку правая почечная вена короткая и отток происходит в нижнюю полую вену, в случае удаления правого надпочечника по разным причинам она может быть повреждена.
Надпочечники и щитовидная железа имеют наибольшее по сравнению другими органами человека кровоснабжение на грамм ткани. В каждый надпочечник могут входить до 60 артериол. По этой причине метастазы при раке легких быстрее поражают именно надпочечники.
ВОПРОС№14
Гипофиз состоит из двух крупных различных по происхождению и структуре долей: передней — аденогипофиза (составляет 70—80 % массы органа) и задней — нейрогипофиза. Вместе с нейросекреторными ядрами гипоталамуса гипофиз образует гипоталамо-гипофизарную систему, контролирующую деятельность периферических эндокринных желёз.
Передняя доля (аденогипофиз)
Передняя доля гипофиза (лат. pars anterior), или аденогипо́физ(лат. adenohypophysiss), состоит из железистых эндокринных клеток различных типов, каждый из которых, как правило, секретирует один из гормонов. Анатомически выделяют следующие части:
pars distalis (бо́льшая часть аденогипофиза)
pars tuberalis (листовидный вырост, окружающий ножку гипофиза, функции которого не ясны)
pars intermedia, которую правильнее обозначать как промежуточную долю гипофиза.
Гормоны передней доли гипофиза:
Тропные, так как их органами-мишенями являются эндокринные железы. Гипофизарные гормоны стимулируют определенную железу, а повышение уровня в крови выделяемых ею гормонов подавляет секрецию гормона гипофиза по принципу обратной связи.
Тиреотропный гормон — главный регулятор биосинтеза и секреции гормонов щитовидной железы.
Адренокортикотропный гормон стимулирует кору надпочечников.
Гонадотропные гормоны:
фолликулостимулирующий гормон способствует созреванию фолликулов в яичниках,
лютеинизирующий гормон вызывает овуляцию и образование желтого тела.
Соматотропный гормон — важнейший стимулятор синтеза белка в клетках, образования глюкозы и распада жиров, а также роста организма.
Лютеотропный гормон (пролактин) регулирует лактацию, дифференцировку различных тканей, ростовые и обменные процессы, инстинкты заботы о потомстве.
Задняя доля (нейрогипофиз)
Задняя доля гипофиза (лат. pars posterior), или нейрогипо́физ (лат. neurohypophysis), состоит из:
нервная доля. Образована клетками эпендимы (питуицитами) и окончаниями аксонов нейросекреторных клеток паравентрикулярного и супраоптического ядер гипоталамуса промежуточного мозга, в которых и синтезируются вазопрессин (антидиуретический гормон) и окситоцин, транспортируемые по нервным волокнам, составляющим гипоталамо-гипофизарный тракт, в нейрогипофиз. В задней доле гипофиза эти гормоны депонируются и оттуда поступают в кровь.
воронка, infundibulum. Соединяет нервную долю со срединным возвышением. Воронка гипофиза, соединяясь с воронкой гипоталамуса, образует ножку гипофиза.
Функционирование всех отделов гипофиза тесно связано с гипоталамусом. Это положение распространяется не только на заднюю долю — «приемник» и депо гипоталамических гормонов, но и на передний и средний отделы гипофиза, работа которых контролируется гипоталамическими гипофизотропными гормонами — рилизинг-гормонами[3].
Гормоны задней доли гипофиза:
аспаротоцин
вазопрессин (антидиуретический гормон, АДГ) (депонируется и секретируется)
вазотоцин
валитоцин
глумитоцин
изотоцин
мезотоцин
окситоцин (депонируется и секретируется)
Вазопрессин выполняет в организме две функции:
усиление реабсорбции воды в собирательных трубочках почек (это антидиуретическая функция вазопрессина);
влияние на гладкую мускулатуру артериол.
Однако название «вазопрессин» не совсем соответствует свойству этого гормона суживать сосуды. Дело в том, что в нормальных физиологических концентрациях он сосудосуживающим эффектом не обладает. Сужение сосудов может происходить при экзогенном внедрении гормона в больших количествах или же при кровопотере, когда гипофиз интенсивно выделяет этот гормон. При недостаточности нейрогипофиза развивается синдром несахарного диабета, при котором с мочой в день может теряться значительное количество воды (15л/сутки), так как снижается её реабсорбция в собирательных трубочках.
Окситоцин во время беременности не действует на матку, так как под воздействием прогестерона, выделяемого жёлтым телом, она становится нечувствительной к данному гормону. Окситоцин способствует сокращению миоэпителиальных клеток, способствующих выделению молока из молочных желез.
Промежуточная (средняя) доля
У многих животных хорошо развита промежуточная доля гипофиза, расположенная между передней и задней долями. По происхождению она относится к аденогипофизу. У человека она представляет тонкую прослойку клеток между передней и задней долями, довольно глубоко заходящую в ножку гипофиза. Эти клетки синтезируют свои специфические гормоны — меланоцитстимулирующие и ряд других.
Развитие
Закладка гипофиза происходит на 4—5 неделе эмбриогенеза. Передняя доля гипофиза развивается из эпителиального выпячивания дорсальной стенки ротовой бухты в виде пальцевидного выроста (кармана Ратке), направляющегося к основанию головного мозга, в области III желудочка, где встречается с будущей задней долей гипофиза, которая развивается позднее передней из отростка воронки промежуточного мозга.
Сосуды и нервы
Кровоснабжение гипофиза осуществляется из верхних и нижних гипофизарных артерий, являющихся ответвлениями внутренней сонной артерии. Верхние гипофизарные артерии вступают в воронку гипоталамуса и, проникая в мозг, разветвляются в первичную гемокапиллярную сеть; эти капилляры собираются в портальные вены, которые направляются по ножке в переднюю долю гипофиза, где снова разветвляются на капилляры, образуя вторичную капиллярную сеть. Нижние гипофизарные артерии снабжают кровью преимущественно заднюю долю. Верхние и нижние гипофизарные артерии анастомозируют друг с другом. Венозный отток происходит в пещеристые и межпещеристые синусы твёрдой мозговой оболочки.
Гипофиз получает симпатическую иннервацию от сплетения внутренней сонной артерии. Кроме того, в заднюю долю проникают множество отростков нейросекреторных клеток гипоталамуса.
Функции
В передней доле гипофиза соматотропоциты вырабатывают соматотропин, активирующий митотическую активность соматических клеток и биосинтез белка; лактотропоциты вырабатывают пролактин, стимулирующий развитие и функции молочных желез и жёлтого тела; гонадотропоциты — фолликулостимулирующий гормон (стимуляция роста фолликулов яичника, регуляция стероидогенеза) и лютеинизирующий гормон (стимуляция овуляции, образования жёлтого тела, регуляция стероидогенеза); тиротропоциты — тиреотропный гормон (стимуляция секреции йодсодержащих гормонов тироцитами); кортикотропоциты — адренокортикотропный гормон (стимуляция секреции кортикостероидов в коре надпочечников). В средней доле гипофиза меланотропоциты вырабатывают меланоцитстимулирующий гормон (регуляция обмена меланина); липотропоциты — липотропин (регуляция жирового обмена). В задней доле гипофиза питуициты активируют вазопрессин и окситоцин в накопительных тельцах. При гипофункции передней доли гипофиза в детстве наблюдается карликовость. При гиперфункции передней доли гипофиза в детстве развивается гигантизм.
ВОПРОС№15
Половые железы - яички у мужчин и яичники у женщин - являются органами, в которых развиваются половые клетки, и одновременно железами внутренней секреции. Внутрисекреторная функция этих желез состоит в выделении половых гормонов, поступающих в кровь. Половые гормоны оказывают влияние на различные функции. В частности, половое созревание организма связано с развитием половых желез и выделением половых гормонов. Под половым созреванием понимают развитие первичных и появление вторичных половых признаков; это наступает в возрасте 12 - 18 лет.
К первичным половым признакам относятся особенности строения половых желез и половых органов у мужчин и женщин. Под вторичными половыми признаками объединяются многие особенности строения и функции организма, которыми отличается один пол от другого. Такими признаками являются, например, различия в форме тела у мужчин и женщин (разная ширина таза и плеч, половые отличия формы грудной клетки и черепа и т. д.), тип распределения волос на теле (появление бороды, усов и волос на груди и животе у мужчины), разная степень развития гортани и связанное с этим отличие в тембре голоса и др.
Половые гормоны влияют также на обмен веществ и на психику. При этом следует иметь в виду, что все процессы, на которые оказывают действие половые гормоны, регулируются и другими железами внутренней секреции и находятся под контролем нервной системы.
Различают мужские и женские половые гормоны.
Мужские половые гормоны - тестостерон и андростерон - вырабатываются в яичках. Они оказывают влияние на половое развитие мужчины, возбуждают деятельность половых органов и чувство полового влечения, участвуют в регуляции обмена веществ и других функций организма.
Женские половые гормоны - эстрадиол, или фолликулин и прогестин (лютеин) - вырабатываются в яичниках, причем первый образуется в фолликулах, второй - в желтом теле. Эстрадиол влияет на половое созревание организма женщины, на развитие молочных желез, а также регулирует менструации. Прогестин называют гормоном беременности, так как он оказывает действие на нормальное течение этого процесса. Под влиянием прогестина, в частности, происходят периодические изменения в слизистой оболочке матки, предшествующие наступлению беременности, а также задержка созревания фолликулов и изменения в молочных железах во время беременности. В опытах на животных установлено, что разрушение желтого тела, в котором образуется лютеин, ведет к прерыванию беременности. Женские половые гормоны, подобно мужским, участвуют в регуляции обмена веществ.
В возрасте 45 - 50 лет внутрисекреторная функция яичников начинает постепенно выпадать. Одновременно прекращается процесс созревания фолликулов, происходит их атрофия, исчезают менструации, наблюдаются изменения и в деятельности других желез внутренней секреции. Этот период носит название климакса и у многих женщин сопровождается различными явлениями (повышенная нервная возбудимость, головные боли, иногда бессонница и т. д.).
Особенно наглядно действие половых гормонов выявляется на животных при удалении половых желез (кастрация) или при их пересадке. Кастрацией домашних животных пользуются с целью откорма скота. У кастрированных животных исчезает половое влечение, понижается обмен веществ и происходит отложение большого количества жира. Имеются наблюдения над людьми, у которых по какой-либо причине были удалены обе половые железы. В детском возрасте после такой операции прекращается развитие половых органов и вторичных половых признаков. Удаление половых желез у взрослых влечет за собой изменение во вторичных половых признаках, понижение обмена веществ и связанное с этим отложение жира.
Представляют интерес опыты со взаимной пересадкой половых желез, произведенные на курах и петухах. Куры, которым были удалены яичники и произведена пересадка семенников, по внешнему виду и поведению становились похожими на петухов. Внешний облик кастрированных петухов, которым были пересажены яичники, тоже изменялся (рис. 99).
Рис. 99. Превращение пола. 1 - нормальный Петух; 2 - нормальная курица; 3 - кастрированный петух; 4 - кастрированная курица; 5 - кастрированный петух, которому пересажены яичники курицы; 6 - кастрированная курица, которой пересажены семенники петуха
Заканчивая рассмотрение желез внутренней секреции, еще раз следует подчеркнуть зависимость секреции гормонов от нервной регуляции. Например, описанный выше факт повышенной секреции гормона надпочечников адреналина при различных эмоциональных состояниях (гнев, страх) указывает на то, что кора больших полушарий влияет на функцию этой железы. Известно также, что иногда тяжелые нервные потрясения являются стимулом к развитию различных эндокринных нарушений (базедова болезнь, сахарный диабет и др.).
В свою очередь железы внутренней секреции оказывают влияние на состояние нервной системы: понижение умственных способностей при гипофункции и повышенная нервная возбудимость при гиперфункции щитовидной железы, различные изменения в деятельности нервной системы при климаксе и др. Половые железы. Половые железы — яички у мужчин и яичники у женщин, как и поджелудочная железа, относятся к железам смешанной секреции. Половые железы выполняют две функции: выделение половых клеток (внешнесекреторная функция) и выделение мужских и женских половых гормонов (эндокринная функция). Половые гормоны, попадая в кровь, оказывают большое влияние на рост и общее развитие ребенка, так как обеспечивают формирование полового аппарата, появление вторичных половых признаков и оказывают воздействие на психику. Под вторичными половыми признаками понимают те внешние различия, которые характерны для мужчин и женщин.
Эндокринная функция половых желез у мальчиков. В раннем детском возрасте в организме мальчиков и девочек одновременно образуются оба вида половых гормонов — мужские и женские,— которые влияют друг на друга. Так, в возрасте 6 лет у мальчиков и девочек образуется одинаковое количество мужского полового гормона, а к 12 годам у мальчиков его выделяется в два раза больше, чем у девочек Как железы внешней секреции яички начинают функционировать у подростков 14—15 лет, образуя семенную жид-кость со сперматозоидами. В качестве эндокринной железы половые железы начинают работать очень рано: на разных стадиях внутриутробного развития они вырабатывают мужской половой гормон, который непосредственно поступает в кровь. Он стимулирует появление вначале первичных, а при половом созревании вторичных половых признаков (рост волос на лице и туловище, разрастание гортани, удлинение и утолщение голосовых связок, развитие мускулатуры). Рост яичек у мальчиков до 5—7 лет очень незначителен и только у ребят более старшего возраста начинается заметное увеличение этих органов.
Эндокринная функция половых желез у девочек. Женские половые железы, так же как и мужские, начинают внешнесекреторную деятельность только в период полового созревания. В яичнике находится огромное количество фолликулов с недозревшими яйцеклетками, которые в большинстве своем еще до наступления половой зрелости подвергаются перерождению. И только 400—500 яйцеклеток достигают полной зрелости. Стенки фолликулов осуществляют также внутрисекреторную функцию, вырабатывая женские половые гормоны. Нормальное половое развитие у девочек начинается несколько раньше, чем у мальчиков, т. е. в 12—13 лет, а иногда и в 10—11 лет. Половые гормоны способствуют наступлению менструаций и развитию вторичных половых признаков (рост волос на определенных участках тела, развитие молочных желез, формирование гортани и коротких тонких голосовых связок).
Половое развитие человека. Процесс полового развития у человека имеет несколько стадий, во время которых идет постепенное усиление функций половых желез и одновременное угнетение деятельности вилочковой железы: первая стадия — детская (девочки до 8 лет, мальчики до 10 лет); вторая стадия — препубертатная (девочки от 9 до 11 лет, мальчики от 10 до 14 лет); третья стадия — пубертатная (девочки от 12 до 16 лет, мальчики от 14 до 18 лет).
У юношей 1—2 раза в месяц, а иногда реже бывают непроизвольные семяизвержения — поллюции. Обычно это происходит во сне и является естественным физиологическим процессом организма, освобождающегося от избытка образовавшейся семенной жидкости.
Появление менструаций у девушек и поллюций у юношей — начало качественного перехода детского организма в зрелый, но это еще не значит, что организм подростка уже готов к половой жизни.
Гражданский брачный возраст в России определен 18 годами, а настоящая физическая зрелость приходит к 19— 20 годам.
ВОПРОС№16
Гормоны - биологически активные вещества, которые выделяются в небольших количествах специальными клетками, распространяются с током крови по всему организму и регулируют многие функции организма. Как правило, клетки, выделяющие гормоны, образуют отдельные органы - железы внутренней секреции, которые функционально объединяются в эндокринную систему.
При внутренней секреции вещества, выделяемые специальными клетками, поступают в кровь или в межклеточную жидкость. Этим внутренняя секреция отличается от внешней, при которой секрет выделяется в пищеварительный тракт или на кожу. Эндокринная система обеспечивает гуморальную регуляцию всех функций организма, в том числе и поведения. Она организует такие компоненты целостного поведенческого акта, как инстинкты, память, эмоции, мотивация, доминанта. Гормональное влияние на психические функции позволяет говорить о психотропной функции гормонов.
Нервная и гуморальная регуляции.
Нервная и гуморальная регуляции одинаково важны для сохранения организма как целого, в том числе и при организации поведения. Две системы различаются следующими свойствами. Нервная регуляция целенаправленна. Сигнал по нервному волокну приходит в строго определенное место, к определенной мышце, другому нервному центру или к железе. Гуморальный сигнал, т. е. молекулы гормона, распространяется с током крови по организму. Будут или нет реагировать ткани и органы на этот сигнал, зависит от наличия в клетках этих тканей воспринимающего аппарата - молекулярных рецепторов. Нервный сигнал быстрый, он движется к органу со скоростью до 140 м/с, задерживаясь при переключении в синапсах лишь на 1 миллисекунду. Благодаря нервной регуляции мы можем сделать что-либо «в мгновение ока».
Содержание в крови большинства гормонов увеличивается лишь через несколько минут после стимуляции, а максимума достигает только через 30 мин или даже один час. Максимальный эффект действия гормона может наблюдаться через несколько часов после однократного воздействия на организм. Таким образом, гуморальный сигнал медленный. Нервный сигнал краткий. (Длительные нервные сигналы характерны в основном для организма с нарушенными функциями.) Как правило, залп импульсов, вызванный стимулом, длится не более долей секунды. Это так называемаяреакция включения. Аналогичную вспышку электрической активности в нервных узлах отмечают при прекращении действия стимула - реакция выключения.
Гуморальная же система осуществляет медленную тоническую регуляцию, т. е. оказывает постоянное воздействие на органы, поддерживая их функцию в измененном состоянии. Уровень гормона может оставаться повышенным все время действия стимула, в некоторых условиях - до нескольких месяцев. Исторически сложилось так, что нервная регуляция долгое время считалась основной, а исследования гуморальной регуляции были предметом лишь медицины и клинической физиологии. Начиная с эпохи Просвещения в физиологии и психологии начал доминировать принцип нервизма, согласно которому работа внутренних органов и поведения человека регулируется импульсами, распространяемыми по нервам. В частности, и гипофиз - центральная эндокринная железа - управляется сигналами, поступающими из головного мозга.
На рисунке Леонардо да Винчи плоскости пересекаются примерно в том месте, где расположены гипоталамус и гипофиз. Схема их взаимных связей приведена справа: 1 - гипоталамус, отростки нейронов (а) которого заканчиваются на кровеносных сосудах (б), связывающих головной мозг с передним гипофизом - 2. Через эту локальную сосудистую систему гипоталамические гормоны поступают к клеткам переднего гипофиза, из них выделяются гормоны, которые, попадая в общий кровоток (в), разносятся по всему организму, в том числе и к периферическим эндокринным железам. Часть нейронов гипоталамуса, в которых синтезируются вазопрессин и окситоцин, дают отростки, их окончания заканчиваются в заднем гипофизе - 3, где гормоны поступают непосредственно в общий кровоток.
Представление о примате нервной системы укрепилось не только в среде специалистов. После того как И. М. Сеченов написал работу «Рефлексы головного мозга» для общественно-политического журнала «Современник», это понятие проникло и в общественное сознание. Герой Л. Толстого Стива Облонский отмечал, что хороший завтрак вызвал у него хорошее настроение, несмотря на серьезные неприятности в личной жизни. «Рефлексы головного мозга, - подумал Степан Аркадьич, который любил физиологию» (Л. Н. Толстой «Анна Каренина»). Действительно, наше настроение зависит от сигналов, поступающих по нервам от желудка, но всякая психическая активность в не меньшей степени зависит и от гуморальных сигналов. Более того, сама нервная система находится под контролем гормонов, так же как и эндокринная система контролируется нервной.
В 1928 г. Эрнст Шаррер описал в нейронах скопление секрета, характерного для клеток эндокринных желез. Так появилась наука нейроэндокринология. В середине 60-х гг. XX в. Дэвид Де Вид обнаружил, что гормон вазопрессин, который синтезируется в головном мозге и выделяется через задний гипофиз в кровеносную систему, изменяет способность к обучению. Это открытие положило начало научной дисциплине психонейроэндокринологии, предметом которой стало взаимное влияние гормонов и поведения. Де Вид ввел и ныне широко распространенный термин нейропептид для обозначения гормонов, представляющих собой короткую молекулу белка из нескольких аминокислот, которые регулируют функции центральной нервной системы.
Секретируемый яичниками и корой надпочечников гормон прогестерон обеспечивает нормальное течение беременности и стимулирует гнездостроительное поведение и другие формы ухода за детенышами, поэтому его принято относить к женским половым гормонам. Между тем прогестерон содержится в значительных количествах и в крови самцов многих видов, включая человека. К 1950 г. стало известно, что прогестерон снижает болевую чувствительность, обладает успокаивающим и противотревожным действием. Однако эти данные не привлекали внимания до тех пор, пока в конце 1980-х гг. не было установлено, что некоторые производные прогестерона синтезируются в головном мозге.
Обнаруженные вещества получили название нейростероидов. Синтез, функции и регуляция секреции нейростероидов сейчас интенсивно изучаются во всем мире, хотя они лишь модулируют эффекты прогестерона, который синтезируется в периферических железах., Строго говоря, гуморальная и нервная регуляции не противопоставлены друг другу и даже не являются системами. Нейрогуморальная система регуляции функций в организме едина, а нервный и гуморальный компоненты могут рассматриваться отдельно исключительно для удобства исследования, т. е. в методическом плане.
Для изучения нервной системы удобны регистрация электрической активности и электрическое раздражение отдельных органов, тканей и клеток. Гуморальная регуляция исследуется на основе биохимического анализа и фармакологических воздействий. Электрофизиологические и биохимические методы очень тонкие, и потому требуется серьезная специализация исследователя. Как правило, нервные и гуморальные процессы рассматриваются изолированно друг от друга. Так, еще Н. К. Кольцов, известный русский биолог, разделял химико-психические и нервно-психические способности человека. Однако при обеспечении такой сложной функции как поведение человека, нейрогуморальная система работает как единое целое.
Деятельность гормонов.
Сигналы, поступающие из головного мозга, регулируют синтез гормонов гипофиза, который управляет периферическими эндокринными железами. В свою очередь, деятельность мозговых структур, ответственных за поведение, находится под постоянным контролем гормонов. На поведение человека влияет изменение содержания гормонов в крови, которое происходит как в результате естественных причин, так и при введении гормона в виде фармакологического препарата. Естественные колебания уровня гормонов происходят, например, во время менструального цикла у женщин.
Именно гормоны - причина периодических колебаний эмоционального фона, настроения, что теперь хорошо известно под названием «менструального синдрома». Сдвиги эмоционального фона, т. е. настроения, бывают настолько сильными, что психиатры иногда определяют у таких женщин маниакально-депрессивный психоз. Даже если колебания настроения не имеют такого размаха, который требует госпитализации, они отражаются на повседневном поведении женщины. От настроения зависят как успешное общение человека с другими людьми, так и способности к выполнению физической и умственной работы.
В течение цикла изменяется скорость реакции, поэтому на некоторых предприятиях снимают с работы на конвейере женщин, находящихся в определенной стадии цикла. В разные стадии менструального цикла женщины лучше выполняют различные поведенческие тесты. Например, во время овуляции внимание и способность к запоминанию у женщин минимальны, а речевая функция максимальна.
Многочисленные и разнообразные суточные и сезонные изменения поведения у животных, в том числе у человека, происходят благодаря эндокринной системе. Повышение уровня мелатонина - гормона эпифиза (шишковидной железы) - отмечается ночью и зимой, т. е. при низкой освещенности. С повышенным содержанием мелатонина связывают пониженное настроение большинства населения в зимний период. Поэтому один из методов лечения депрессии - фототерапия (в процессе фототерапии пациент просто смотрит на ярко освещенный экран). В некоторых северных странах, например в Швеции, зимой увеличивают количество фильмов о тропических странах. Благодаря эндокринной системе яркие картины улучшают настроение человека. Тот же мелатонин ответственен и за рост числа психических нарушений весной и осенью, когда длина светового дня стремительно изменяется. Известное весеннее обострение у шизоидных личностей связано с деятельностью эндокринной системы.
Наше самочувствие и соответственно работоспособность меняются в течение суток. Пробуждение организма в утренние часы совпадает с выбросом гормонов, активирующих кору надпочечников: коритоколиберина из гипоталамуса (отдела мозга, непосредственно граничащего с гипофизом) и кортикотропина из гипофиза. Кортиколиберин повышает общую активность центральной нервной системы, подготавливает мозг к работе. Кортикотропин улучшает способности человека к извлечению памятного следа, иначе говоря, «освежает» память. Выброс обоих гормонов усиливается при физических нагрузках на организм, поэтому утренняя зарядка помогает человеку проснуться благодаря активации кортиколибериновой системы.
Кортиколиберин, кортикотропин и кортизол, вырабатываемые в коре надпочечников, относятся к тем стрессорным гормонам, синтез и секреция которых резко возрастают при любых воздействиях на организм. Стрессорная реакция неспецифична, т. е. она имеет общие черты независимо от того, что ее вызвало: важная для нас новость или болезнь, или утренняя зарядка. Одно из таких неспецифических свойств стресса - активация коры надпочечников. Эти гормоны наиболее четко выявляют взаимную связь душевных и телесных состояний человеческого организма. Утренняя зарядка - это пример влияния стресса, вызванного мышечной нагрузкой, на психические функции. Влияние в противоположном направлении - от души к телу - отмечается на спортивных соревнованиях. Волнение перед стартом помогает спортсменам показать значительно более высокие результаты, чем на тренировках. В то же время в спортивной среде хорошо известно понятие «перегореть перед стартом».
Оно означает, что излишнее волнение, т. е. чрезмерный психологический стресс, привел к снижению мышечной работоспособности, скорости реакции и согласованности работы разных групп мышц. Исключительная важность гормонального компонента стрессорной реакции определяется тем, что в некоторых случаях стрессорные гормоны продолжают вырабатываться и после того, как причина стресса исчезла. При этом они оказывают долгосрочное влияние и на психику, и на различные органы человека. Стрессорные гормоны вызывают, таким образом, психосоматические заболевания - болезни тела, основанные на эмоциональных стрессах. К этой группе болезней относятся многообразные патологические изменения организма, начиная от заболеваний сердечнососудистой системы и язвенной болезни, и кончая такими, на первый взгляд, не связанными с психикой заболеваниями, как бесплодие и облысение.
От 30 до 70% пациентов, первично обратившихся в поликлинику к участковому врачу с жалобами на неприятные ощущения в какой-нибудь части тела, нуждаются в консультации психотерапевта, а не в лечении внутренней болезни. Сначала психосоматические болезни, являясь психическими по происхождению, могут быть излечены коррекцией психического состояния. Поскольку чаще всего на психический компонент не обращают внимания, через некоторое время могут развиться настоящие, так называемые органические расстройства. Как правило, к этому времени уровень стрессорных гормонов уже возвращается к норме, и поставить правильный диагноз бывает трудно. Стрессорные гормоны, если неблагоприятные факторы действовали долго, становятся причиной и серьезных психических болезней, когда изменение душевного склада пациента выступает на первый план.
Чаще всего ведущим симптомом оказывается подавленное настроение, которое сопровождается сниженной физической и умственной работоспособностью - депрессивным синдромом. Влияние на психику гормоны стресса могут оказывать и при введении их человеку в качестве лечебного средства. Гормоны коры надпочечников и их производные: кортизол, дексаметазон, преднизолон - широко используются, в частности, для подавления воспаления. При передозировке названных препаратов могут возникать галлюцинации, бред (так называемые кортизоловые психозы). Гормоны влияют на поведение на разных уровнях организации поведенческого акта. На сенсорном уровне они влияют на способность человека к выделению определенных сигналов из внешней среды. Так, зрительная чувствительность у женщин меняется на протяжении менструального цикла.
Самый слабый свет женщина воспринимает во время овуляции, а во время менструации ее зрительная система к слабым световым сигналам наименее чувствительна. Важно, что при этом гуморальным влияниям подвергаются не светочувствительные клетки глаза, а сами процессы, протекающие в головном мозге. От гормонов зависят и определенные предпочтения. Психологическому тестированию подвергли три группы женщин: не принимающих постоянно лекарственных препаратов, регулярно принимающих противозачаточные средства, повышающие прогестерон, и принимающих противозачаточные средства, не изменяющие уровень прогестерона. Им предложили фотографии мужчин с просьбой оценить их привлекательность в баллах. Оказалось, что в отличие от двух других групп женщины, имеющие постоянно высокий уровень прогестерона, более привлекательными находили мужчин с инфантильными чертами внешности: безбородых, с мягкими чертами лица, неатлетическим телосложением.
Гормоны влияют на двигательные механизмы поведения. Наиболее широко известный пример - действие мужских половых гормонов (андрогенов) на мышечную ткань. Чтобы мясо гуся стало нежным, его следует кастрировать за несколько месяцев до праздника Рождества Христова. Это объясняется тем, что андрогены не только стимулируют развитие сперматозоидов и мужскую половую активность, но и способствуют росту мышечной ткани, а также поддерживают высокий уровень обмена веществ в мышечном волокне и нервной ткани. Они обусловливают синтез новых молекул, которые являются строительным материалом клетки и служат для производства энергии. Этот аспект обмена веществ называется анаболическим, а препараты, которые его стимулируют, анаболиками. Анаболики получают, модифицируя молекулы природных андрогенов таким образом, чтобы усилить их эффект на мышечную ткань и ослабить их влияние на половую и центральную нервную системы.
Тем не менее полностью избавиться от этих эффектов не удается. В результате профессиональные спортсмены, а тем более люди, принимающие анаболики самостоятельно, без рекомендации врача, как правило, страдают половыми расстройствами и болезнями, связанными с нарушением работы центральной нервной системы. Следует отметить, что пропорциональная зависимость потенции от уровня андрогенов - это заблуждение. Для совершения полового акта необходим некий уровень гормона. Его дальнейшее повышение не приводит к увеличению половых способностей мужчины. Неоднократно проводились исследования, в ходе которых добровольцы сообщали о своей половой активности и сдавали кровь для определения половых гормонов.
Не было обнаружено зависимости между содержанием андрогенов в крови и частотой половых актов. Более того, содержание андрогенов в крови повышается в результате половой активности человека, а не наоборот. Одно время андрогены называли «гормонами агрессии». В Германии, например, штурмовым отрядам перед атакой делали инъекции тестерона, а в США серийных убийц кастрировали, стараясь таким образом снизить их агрессивность. Однако в экспериментах выяснилось, что степень агрессии зависит, в первую очередь, от предшествующего опыта, а не от гормонального фона.
Только крайние значения половой и агрессивной активности соответствуют очень высокому и очень низкому содержанию андрогенов. Эти крайние формы связаны, как правило, с врожденными аномалиями, например с лишней половой хромосомой. У таких людей отмечаются не только высокий уровень андрогенов и повышенная агрессивность, но и ряд других аномалий: резко сниженная болевая чувствительность, характерные изменения внешности, склонность к антисоциальным формам поведения. В основной же популяции здоровых людей зависимость между содержанием гормона и выраженностью агрессивного поведения отсутствует. Приведем пример наблюдения за женщинами-культуристками, подтверждающий сложную взаимную зависимость поведения, обмена веществ и гормонального фона.
Как известно, в культуризме оценивается объем мышц, а не их способность к работе. Вот почему для быстрого увеличения мышечной массы культуристы особенно склонны к употреблению анаболиков. По мере увеличения мышечной массы и уменьшения массы жировой ткани в ходе тренировок у культуристок сначала ослабляется либидо, а затем даже прекращается нормальный менструальный цикл. Специальные опыты на крысах показали, что, действительно, определенное соотношение жировой и мышечной массы необходимо для нормальной работы женской половой системы. Таким образом, процессы обмена веществ, которые регулируются гормонами, могут оказывать воздействие на гормональные показатели. В этом случае реализуется один из фундаментальных принципов регуляции живых систем - принцип обратной связи, согласно которому часть сигнала, выходящего из системы, поступает на ее вход, ослабляя или усиливая продукцию данного сигнала.
ВОПРОС№18
ЭНДОКРИННАЯ ФУНКЦИЯ ГИПОТАЛАМО-ГИПОФИЗНОЙ СИСТЕМЫ
Болезни эндокринной системы - ЛЕЧЕНИЕ за ГРАНИЦЕЙ – TreatmentAbroad.ru – 2007
Сейчас гипоталамус рассматривают не только как центр регуляции работы вегетативной нервной системы, температуры тела, но и как эндокринныый орган.
Гипоталамус представляет собой образование из нервной ткани, расположенное в головном мозге. В гипоталамусе содержится огромное число отдельных групп нервных клетках, которые называются ядрами. Общее число ядер около 150.
Гипоталамус имеет большое количество связей с различными участками нервной системы и выполняет множество функций, которые до конца еще не изучены, так же, как и не известно, назначение многих его ядер.
Эндокринная функция гипоталамуса тесно связана с работой нижнего мозгового придатка – гипофиза. В клетках и ядрах гипоталамуса выделяются:
Гипоталамические гормоны – либерины и статины, которые регулируют гормонпродуцирующую функцию гипофиза.
Тиреолиберин – стимулирует выработку тиротропина в гипофизе.
Гонадолиберин – стимулирует выработку в гипофизе гонадотропных гормонов.
Кортиколиберин – стимулирует выработку в гипофизе кортикотропина.
Соматолиберин – стимулирует выработку в гипофизе гормона роста – соматотропина.
Соматостатин – угнетает выработку в гипофизе гормона роста.
Эти гормоны, синтезированные гипоталамусом, поступают в особую кровеносную систему, связывающую гипоталамус с передней долей гипофиза. Два из ядер гипоталамуса производят гормоны вазопрессин и окситоцин. Окситоцин стимулирует выделение молока во время лактации. Вазопрессин или антидиуретический гормон контролирует водный баланс в организме, под его влиянием усиливается обратное всасывание воды в почках. Эти гормоны накапливаются в длинных отростках нервных клеток гипоталамуса, которые заканчиваются в гипофизе. Таким образом, запас гормонов гипоталамуса окситоцина и вазопрессина хранится в задней доле гипофиза.
Гипофиз или нижний мозговой придаток называют главной эндокринной железой организма человека. Он расположен в костной полости, которая называется турецким седлом. Гипофиз расположен на основании головного мозга и прикрепляется к мозгу тонким стеблем. По этому стеблю гипофиз связан с гипоталамусом. Гипофиз состоит из передней и задней долей. Промежуточная доля у человека недоразвита. В передней доле гипофиза, ее называют аденогипофиз, производится шесть собственных гормонов. В задней доле гипофиза, называемой нейрогипофиз, накапливаются два гормона гипоталамуса – окситоцин и вазопрессин.
Гормоны, которые производит передняя доля гипофиза:
Пролактин. Этот гормон стимулирует лактацию (образование материнского молока в молочных железах).
Соматотропин или гормон роста – регулирует рост и участвует в обмене веществ.
Гонадотропины
– лютеинизирующий и фолликулостимулирующий гормоны. Они контролируют половые функции у мужчин и женщин.
Тиротропин. Тиротропный гормон регулирует работу щитовидной железы.
Адренокортикотропин. Адренокортикотропный гормон стимулирует выработку глюкокортикоидных гормонов корой надпочечников.
Передняя доля гипофиза или аденогипофиз регулирует, таким образом, работу трех желез-мишеней.
При недостаточности или удалении желез-мишеней, возрастает концентрация регулирующего гормона, так как организм пытается восстановить нормальный уровень гормонов. В этом случае возникают состояния недостаточности функции желез при избыточной продукции стимулирующих гормонов гипофиза.
При недостаточности функции половых желез возникает первичный гипергонадотропный гипогонадизм (недостаточность функции половых желез при избыточном уровне фоллитропина и лютропина).
При недостаточности коры надпочечников возникает адиссонова болезнь (недостаточность гормонов коры надпочечников при избыточном уровне адренокортикотропина).
При недостаточности функции щитовидной железы возникает первичный гипотироз (недостаточность гормонов щитовидной железы при избыточном уровне тиротропина).
Если же разрушен или удален сам гипофиз – исчезает его тропная (стимулирующая) функция и тропные гормоны не вырабатываются. В этом случае из-за отсутствия стимулирующего действия тропных гормонов гипофиза возникают:
Вторичный гипогонадотропный гипогонадизм.
Вторичная надпочечниковая недостаточность.
Вторичный гипотироз.
При этом исчезают также пролактин и гормон роста, и их действие. Выработка же окситоцина и вазопрессина не нарушается, поскольку их производит гипоталамус.
ВОПРОС№19
Нейрон, или нейроцит, состоит из тела и отростков. У каждого нейрона есть один длинный, обычно не ветвящийся или слабо ветвящийся аксон, по которому возбуждение передается от одного нейрона к другому. Аксон, однако, может сильно ветвиться на дальнем от тела конце. Эти ветвления аксона называют аксонными терминалями (окончаниями), или телодендроном.
Место нейрона, от которого начинается аксон, имеет особое функциональное значение и называется аксонным холмиком. Здесь, по сути, решается возможность формирования сигнала, который будет передан другим клеткам. Этот сигнал генерируется как потенциал действия, который представляет собой специфический электрический ответ мембраны возбудившейся нервной клетки. Функцией же аксона является проведение нервного импульса к аксонным терминалям. По ходу аксона могут образовываться его ответвления - коллатерали. Коллате-рали могут возвращаться в тот же нервный центр, в котором находится клетка, или связывать ее с соседними областями. Дендриты не обязательны, но обычно нейрон (кроме униполярных или одноотростчатых клеток) содержит от одного до множества дендритов. Основной функцией дендритов является сбор информации от множества других нейронов.
Нейроны новорожденного имеют меньшее число дендритов (меж-нейронных связей). С возрастом их содержание неуклонно увеличивается, что сопровождается возрастанием массы мозга, которое интенсивно продолжается в ранние постнатальные сроки онтогенеза и затягивается вплоть до полового созревания. У человека увеличение массы мозга продолжается до 30-35 лет.
Большинство аксонов нервной системы позвоночных покрывается миелином. Миелинизацию аксонов осуществляют клетки глии. В центральной нервной системе эту роль выполняют олигодендроциты, в периферической - нейролеммоциты.
Основным свойством нейрона является способность возбуждаться (генерировать электрический импульс) и передавать (проводить) это возбуждение к другим нейронам и клеткам периферических органов.
Форма и размеры нейронов, длина их отростков весьма вариабельны. Диаметр перикариона (тела) нейрона колеблется от 5-8 до 100— 120 мкм. Нейрон может иметь звездчатую, веретеновидную, пирамидную, округлую, грушевидную, овальную и иную форму. Отличаются нейроны и по числу отростков, подразделяясь на униполярные, псев-доуниполярные, биполярные и мультиполярные. В свою очередь мультиполярные клетки могут отличаться числом и разветвленностью дендритов, формой образуемого ими дендритного дерева (распространенностью ветвлений этих отростков в объеме нервной ткани), длиной и распределением отростков нейронов.
На световом уровне при общих методах окрашивания тела нервных клеток имеют оксифильную цитоплазму, крупное ядро округлой или овальной формы. Ядро занимает центральное положение, но иногда смещается к одному из полюсов нейрона, что чаще всего связано с реактивными процессами. В ядре хорошо развито одно или несколько ядрышек. В части нейронов можно видеть два и более ядра (до 10-15). Как правило, это характерно для вегетативных узлов, особенно встроенных в структуру внутренних органов (внутриорганные или интрамуральные ганглии, особенно органов на уровне таза). Такие многоядерные клетки, по сути, являются редуцированными проявлениями клеточной пролиферации, не завершившихся полноценным делением. Кариоплазма отличается преобладанием диффузного (слабо конденсированного) хроматина. Нейроны имеют высокое сродство к солям серебра (аргирофильность). Специфичными для нейрона структурами цитоплазмы на светооптическом уровне являются хроматофильное вещество цитоплазмы и нейрофибриллы. Хроматофильное вещество цитоплазмы (субстанция Ниссля, тигроид, базофильное вещество) проявляется при окрашивании нервных клеток основными красителями (метиленовым синим, толуидиновым синим, гематоксилином и т. д.) в виде зернистости. Зернистость может быть в виде крупных глыбок неправильной формы, иметь сетевидное строение или в виде мелкой зернистости. Это зависит от типа нейрона (крупные нейроны обычно имеют более крупные глыбки) и от его функционального состояния. На электронно-оптическом уровне хроматофильное вещество цитоплазмы есть не что иное, как скопления цистерн гранулярной эн-доплазматической сети. Эти органеллы отсутствуют в аксоне и в аксонном холмике, но имеются в начальных сегментах дендритов. Поэтому тигроид не виден в начале аксона, но прослеживается в дендри-тах, что позволяет идентифицировать вид отростков. Процесс разрушения или распада глыбок хроматофильного вещества цитоплазмы называется тигролизом и наблюдается при реактивных изменениях нейронов (например при повреждении) и их гибели. Тигролиз нередко сопровождается вакуолизацией цитоплазмы, при этом уплощенные цистерны ЭПС разбухают, а цитоплазма приобретает вспененный вид.
Нейрофибрилла - эта структура, выявленная в нейроне одной из первых при помощи классических методов импрегнации серебром. Интересен тот факт, что картина, наблюдаемая нами под микроскопом при импрегнации препаратов нервной ткани, по сути, является множеством артефактов, поскольку этот эффект возникает посмертно, в результате осаждения грубого осадка металла на органеллах цитоскелета нейрона. Основой для выявления нейрофибрилл являются нейрофила-менты и нейротубулы, формирующие каркас нервной клетки. Нейрофибриллы видны как нежная сеть волокон в цитоплазме нервных клеток. Кроме того, в нейронах довольно часто можно видеть липидные включения (зерна липофусцина). Они характерны для старческого возраста и часто появляются при дистрофических процессах. Зерна липофусцина являются остаточными тельцами, возникающими в результате неполного переваривания. Их накопление может приводить к нарушению нормальных метаболических процессов в клетках и их гибели. В ряде нейронов в норме обнаруживаются пигментные включения (например с меланином), что обуславливает окрашивание нервных центров, содержащих подобные клетки (черная субстанция, голубоватое место, красное ядро).
Субмикроскопическое строение и некоторые цитофизиологи-ческие особенности тела нейрона. Несмотря на крайнее разнообразие морфологии нейронов, они имеют ряд общих черт строения. Ядра нейронов, особенно крупноклеточных, имеют округлую или овальную форму. Кариолемма часто формирует впячивания, что может значительно увеличивать площадь контакта поверхности ядра с цитоплазмой (нейроплазмой). Ядерная оболочка имеет большое количество ядерных пор, что указывает на активные процессы обмена, в том числе с РНК и субъединицами рибосом. Кариоплазма в крупных нейронах светлая. Но в мелких нервных клетках можно видеть и повышенную склонность к осаждению солей осмия (осмиофильность) и темное ядро. Данные особенности на светооптическом уровне проявляются в гипохромности или гиперхромности ядер (т. е. пониженной или повышенной склонности к окрашиванию ядерными красителями). Хорошо развит ядрышковый аппарат. В ядре обычно имеется 1-2 крупных умеренной плотности ядрышка, занимающих центральное положение. В мелких нервных клетках ядрышки мельче, их может быть до 3-6 и более. При реактивных проявлениях в клетке можно наблюдать смещение ядрышка к одному из краев ядра и его распад.
Матрикс цитоплазмы (нейроплазмы) гомогенный или мелкозернистый, слабой или умеренной электронной плотности. В нейроне сильно развита гранулярная ЭПС, представленная скоплениями или диффузно расположенными плоскими цистернами и трубочками. Как уже указывалось выше, гранулярная ЭПС преобладает в теле и может содержаться в начальных сегментах дендритов. За ней закреплено участие в процессах синтеза медиаторов и модуляторов, мембранных белков и т. д. Кроме связанных имеется и значительное число свободных полисом и рибосом (Питерс А., Полей С., Уебстер Г., 1972).
В нейронах хорошо развиты митохондрии. Они средних и больших размеров (диаметр 1-3 мкм), овальной или нитчатой формы, кристы имеют трабекулярное строение. Нейроны в энергетическом отношении крайне зависимы от аэробного окисления и во взрослом состоянии фактически неспособны к анаэробному гликолизу. В то же время тела нейронов имеют весьма высокую энергетическую активность. Эта активность многократно превышает таковую в зонах прилежащего ней-ропиля, и особенно белого вещества. В сером веществе нередко высокой активностью энергопотребления характеризуются участки скоплений синапсов. В то же время распределение кислорода и глюкозы с учетом возможностей транспорта из кровеносных сосудов и уровня потребления таково, что их запасы истощаются за секунды после прекращения кровотока (Васильев Ю.Г., Чучков В.М., 2003). В связи с этим нервные клетки находятся в выраженной зависимости от поступления кислорода и глюкозы и при нарушении кровотока практически сразу прекращают свою жизнедеятельность. Момент прекращения кровотока в головном мозге означает начало клинической смерти. Практически сразу же начинаются процессы саморазрушения в нейронах и прекращается их специфическая функциональная активность. Их мембраны деполяризуются. Митохондрии, ЭПС, ядерные оболочки набухают, а затем разрушаются. Начинаются процессы аутолиза и пе-рекисного окисления. При мгновенной смерти при комнатной температуре и нормальной температуре тела процессы саморазрушения в нейронах обратимы в течение 5-7 минут. Это и является сроком так называемой клинической смерти, когда возможно оживление организма. Необратимые изменения в нейронах жизненно важных центров, например дыхательного и сосудодвигательного, приводят к переходу клинической смерти в биологическую.
В нейронах значительного развития достигает комплекс Гольджи. Он может располагаться компактно или быть рассеян в цитоплазме тела нейрона. Специфическими органеллами нейрона являются нейро-филаменты и нейротубулы.
Нейрофиламенты представляют собой промежуточные филаменты диаметром 8-10 нм, образованные фибриллярными белками (белками так называемого нейрофибриллярного триплета, или нейрофибрилляр-ными кислыми белками). Основными функциями данной органеллы являются опорно-каркасная, обеспечение стабильной формы нейрона и нервной системы в целом. Аналогичную роль играют тонкие микрофи-ламенты (поперечный диаметр 6-8 нм), содержащие белки актины. В отличие от подобных микрофиламентов в других тканях и клетках, они не соединяются с микромиозинами, что делает невозможным активные сократительные функции в зрелых нервных клетках.
Нейротубулы по основным принципам своего строения практически не отличаются от микротрубочек. Они, как и все микротрубочки, имеют поперечный диаметр около 24 нм и на поперечном разрезе сформированы 13 молекулами глобулярных белков тубулинов. Как и везде, они поляризованы. В отличие от большинства микротрубочек в других клетках, нейротубулы весьма стабильны. Тубулин в них находится в метилированной форме и нередко кэпирован (концы нейроту-бул прикрыты белковыми молекулами, функция которых заключается в стабилизации нейротубул и предохранении их от разрушения). В нервной ткани они выполняют очень важную, если не сказать, уникальную роль. Они несут опорно-каркасную функцию, обеспечивают процессы циклоза, направляя органеллы и включения. Полярность ор-ганеллы, в которой имеется отрицательно и положительно заряженный конец, позволяет контролировать диффузионно-транспортные потоки в аксоне (так называемый быстрый и медленный аксоток). Кроме того, значительное число нейрофизиологов приписывает микротрубочкам роль хранилища поступающей в мозг информации.
В цитоплазме тел нейронов часто встречаются лизосомы. Они участвуют в пластических процессах, осуществляя катаболизм (разрушение) старых органелл и структур. В результате переваривания образуются остаточные тельца, включая липофусцин. Избыточное накопление липофусцина может приводить к дистрофическим процессам в нейроне, к нарушению его специфической активности и даже гибели. Такие явления характерны для старческих изменений и при различных патологических воздействиях. В теле нейронов можно видеть также транспортные пузырьки, часть которых содержит медиаторы (нейромедиаторы) и модуляторы, окруженные мембраной. Их размеры и строение зависят от содержания того или иного вещества. Достигнув окончания аксона, медиаторы накапливаются в синаптических пузырьках. Обычно зрелый нейрон синтезирует и выделяет лишь один медиатор, в соответствии с этим он имеет название. Например, серо-тонинергический нейрон образует и выделяет серотонин, дофаминер-гический - дофамин, холинергический - ацетилхолин и т. д.
Дендриты при световой микроскопии видны как короткие, зачастую сильно ветвящиеся отростки нейрона. Их ветвления более выражены в терминальных областях. Распространение дендритного дерева может быть ограничено областью нервного центра, в котором располагается нейрон, или прилежащими зонами. Дендриты в своих начальных сегментах содержат органеллы, характерные для тела нейрона, и фактически являются его продолжением. В частности, можно видеть цистерны гранулярной ЭПС, в результате чего на световом уровне в них видна хроматофильная субстанция. Хорошо развит цитоскелет, поддерживающий форму отростков.
Аксон, или нейрит, чаще всего длинный, слабо ветвится или не ветвится. Уже в начальном сегменте аксона, в отличие от дендрита, в нем отсутствует гранулярная ЭПС. Микротрубочки и микрофиламен-ты располагаются упорядоченно и на поперечных срезах нередко принимают форму решетки. В цитоплазме аксона видны митохондрии, транспортные пузырьки. Аксоны в основном миелинизированы (в ЦНС - олигодендроцитами, в периферической нервной системе - лем-моцитами). Начальный сегмент аксона расширен и имеет название аксонного холмика. Именно в зоне аксонного холмика происходит временная и пространственная суммация поступающих в нервную клетку сигналов, и если возбуждающие сигналы достаточно интенсивны, то в аксоне формируется потенциал действия и волна деполяризации (нервный импульс) направляется вдоль аксона, передаваясь на другие клетки.
От отростков нейронов, а нередко и от его тела, отходят небольшие выпячивания, которые имеют форму, напоминающую шипики, откуда и получили свое название. Особенно развиты они на некоторых нервных клетках в составе ЦНС. Шипики являются постсинаптическими структурами и соответствуют зонам взаимодействия нервных клеток с другими. Они имеют элементы цитоскелета, митохондрии. Нередко видны уплощенные цистерны и электронно-плотное вещество мембраны.
Аксоток (аксоплазматический транспорт веществ). Нервные волокна, как уже указывалось выше, имеют микротрубочки, по которым перемещаются вещества от тела нервной клетки к периферии (антеро-градный аксоток) и от периферии к центру (ретроградный аксоток). Направление аксотока обеспечивает полярность микротрубочек. В нем участвует белок кинезин, взаимодействующий с тубулином микротрубочек и осуществляющий транспорт с затратой энергии АТФ. Различают быстрый (со скоростью 100-1000 мм/сут.) и медленный (со скоростью 1-10 мм/сут.) аксоток (Куффлер С., 1979).
Быстрый аксоток одинаков для различных волокон и разных маркеров. Он требует значительной концентрации АТФ, что связано с высокими энергозатратами для его осуществления, и происходит в составе транспортных пузырьков. Быстрый аксоток осуществляет транспорт медиаторов и модуляторов.
Медленный аксоток связан с распространением от центра к периферии биологически активных веществ, а также составляющих компонентов мембран клеток и белков. Благодаря медленному антероград-ному току биологически активные вещества осуществляют дифференциацию скелетных мышц, что имеет большое биологическое значение. За счет ретроградного тока нейротропные вещества поступают от периферии к центру, оказывая трофическое влияние на саму нервную клетку. В частности, известно, что при перерезке двигательных нервов происходит лизис нейронов. Доказано, что за счет ретроградного тока в ЦНС могут поступасть различные токсические вещества.
Основная роль в возбуждении принадлежит открытию ионных каналов, благодаря которым ионы натрия способны проникать в цитоплазму клетки, а ионы калия, в свою очередь, диффундировать по градиенту концентрации в межклеточное вещество.
Кроме генерации потенциала действия, нейрон способен передавать его на весьма значительное расстояние. Осуществляется эта передача по отросткам, в первую очередь по аксонам. Аксоны являются основой для формирования нервных волокон, которые в ЦНС образуют тракты, а на периферии объединяются в нервы (Ходжкин А., 1965; Кэндел Э., 1980). Нервные волокна часто окружены специализированными клетками - нейроглией, способной образовывать оболочки из многократно концентрически расположенных мембран - миелина, который значительно ускоряет проведение импульса за счет сальтаторного механизма.
Миелин формируется до и в ранние сроки после рождения, но утолщение волокон осуществляется вплоть до 30 лет. В ходе миелинизации нейролеммоцит или отросток олигодендроцита оборачивается вокруг аксона, образуя многослойную оболочку вокруг него. Миелинизации не подвергается область аксонного холмика и концевые участки аксона. Фактически оборачивается участок сдвоенной мембраны глиоцита, который является частью инвагинации плазмолеммы. Расширенная зона такой инвагинации в безмиелиновом волокне непосредственно охватывает участок аксона. Суженный участок носит название мезаксона. Многократно оборачивающийся вокруг отростка мезаксон и составляет миелин. Таким образом, миелиновая оболочка аксона состоит из плотно упакованных, перемежающихся липидных и белковых мембранных слоев мезаксона. Аксон не полностью покрыт миелином. Участки между такими перерывами называются узлами и окружены одним глиоцитом. Перерывы между узлами называются межузловыми перехватами (перехватами Ранвье). Ширина такого перехвата от 0,5 до 2,5 мкм. Миелин обладает свойствами изолятора, и собственно переключение мембранного потенциала происходит только в участках между миелиновыми оболочками. Зоны межузловых перехватов соответствуют участкам контактов соседних глиоцитов. Функция перехватов связана с имеющимися в их составе ионными каналами и насосами, которые способны к перераспределению ионов между внутриклеточным и межклеточным пространствами. Вследствие этого потенциал действия (возбуждение) «перескакивает» через участки изолированной мембраны, и такой способ передачи возбуждения называется дискретным (прерывистым или скачкообразным, сальтаторным), в отличие от безмиелиногого нервного волокна, где возбуждение распространяется непрерывно и намного медленнее.
Кроме потенциала действия в возбудимых тканях выделяют еще один важный способ передачи информации - так называемые локальные градуальные потенциалы. Градуальные сигналы зависимы от места воздействия и могут быть обусловлены внешними влияниями, межсинаптической передачей. Динамика сигналов взаимозависима от интенсивности раздражителя и характеристик нейрона. В отличие от потенциала действия градуальные сигналы различаются по интенсивности и длительности. Важнейшим отличительным свойством градуального сигнала является то, что он проводится вдоль клетки пассивно, с использованием механизмов локального перераспределения ионов. Сложность такой передачи заключается в весьма малом диаметре волокон и высоком сопротивлении. В результате такие сигналы относительно быстро затухают при передаче сигнала на большое расстояние. В целом ситуацию можно сравнить с распространением кругов на воде. Градуальные сигналы могут быть существенными при локальных межнейронных взаимодействиях на расстоянии не более 1-2 мм между нейронами внутри отдельного нервного центра. В формировании градуальных потенциалов наряду с химическими могут играть существенную роль электрические синапсы.
Если потенциал действия функционирует по принципу «все или ничего», то градуальные сигналы могут существенно различаться по интенсивности. Собственно суммация многих градуальных сигналов лежит в основе последующего образования потенциала действия. Таким образом, процесс анализа, суммации и реакций нейронов лежит в основе формирования сигналов действия и ответов нервных клеток. Влияние на градуальные сигналы могут оказывать не только нейроны, но и непосредственное глиальное окружение (Ходжкин А., 1965), особенно на фоне того, что межклеточного вещества в ЦНС фактически нет, а пространство между нейронами и глией представлено всего лишь узкими щелями, имеющими крайне небольшой объем, ионный состав которого вследствие этого может быстро изменяться как под воздействием активности нейронов, так и глии. Это оказывает модулирующее влияние на проведение волн деполяризации и градуальных потенциалов, целиком и полностью зависящих от ионных токов, а также от концентрации и распределения самих ионов.
После передачи возбуждения в участке, его передавшем, возникает зона невозбудимости (рефрактерности), в то время как до этого в ин-тактной зоне развивается потенциал действия. Эта последовательность событий повторяется для каждого последующего участка. На каждое такое возбуждение требуется время, соответственно, чем оно меньше, тем большее количество потенциалов действия может проводить нервное волокно за единицу времени. Степень миелинизации волокна и его диаметр являются одними из главных факторов, определяющих скорость проведения возбуждения. В немиелинизированных волокнах она прямо пропорциональна их диаметру, но их диаметр обычно невелик, и скорость проведения возбуждения, как правило, колеблется в пределах от 0,3-0,5 до 2-2,5 м/с (Николлз Д. и др., 2003), тогда как в крупных миелинизированных аксонах может достигать 120 м/с. У млекопитающих и птиц природа сохранила немиелинизированными постганглионарные нервные волокна, которые регулируют деятельность внутренних органов. Практически все нервные волокна в центральной нервной системе являются миелиновыми.
В ЦНС аксоны, образуя параллельно лежащие пучки, носят название путей, или трактов. В трактах, в отличие от периферии, одна мие-линобразующая клетка (олигодендроглиоцит) своими отростками окружает сразу несколько нервных волокон, часто лежащих на расстоянии нескольких десятков мкм друг от друга.
Рядом интересных особенностей обладает и хроматин нейронов. Он отличается значительным разнообразием негистоновых белков и особенностями организации нуклеосом, что, вероятно, сопровождается особенностями считывания генетической информации с ДНК. Это сочетается с определенными особенностями сплайсинга, что ведет к модификациям образуемых клетками полипептидных цепочек (Suzuki K., 1993).
В нейронах млекопитающих экспрессируется несколько десятков тысяч уникальных генов. При этом различные популяции нейронов способны экспрессировать различные группы генов, они могут частично перекрываться, но не повторяются в нейронах с разной специализацией (Borrelli E. et al., 2008). Это обеспечивает столь высокое разнообразие морфо-функциональной организации нервных клеток. Специализация нейронов является основой функции мозга. В числе прочего, специализация предполагает местоположение, специфический набор синаптических связей (весьма многочисленных), ведущий медиатор и набор модуляторов, структурные особенности, специфику биохимических процессов, соответствующий набор рецепторов, особенности ионных каналов и т. д. (Мак-Фарленд Д., 1988; Корочкин Л.И., Михайлов А.Т., 2000). Понятно, что этот весьма гетероморфный набор особенностей каждого нейрона ведет к их разнообразию, а оно затрудняет создание удовлетворяющей всех простой единой классификации. Увеличение составляющих элементов классификации в свою очередь резко затруднит работу с ней. В связи с этим используют много вариантов классификаций нейронов, оперирующих лишь одним или несколькими ведущими признаками строения, биохимии и функции. В сложно устроенном мозге высших млекопитающих, судя по всему, имеются несколько иерархических уровней структурнофункциональной организации (Блум Ф. и др., 1988). Они различаются по степени разнообразия, сложности межнейронных коммуникаций, тонкости специализации каждой нервной клетки, времени формирования в эволюционно-онтогенетическом аспекте.
Наиболее примитивно устроенные нейронные комплексы в эволюционном отношении являются самыми древними, раньше формируются в онтогенезе, морфологически обычно более консервативны. Это прежде всего спинной мозг и каудальные отделы ствола головного мозга. Более разнообразно устроены в отношении специализации нервных клеток промежуточный мозг и подкорковые центры переднего мозга, но они не идут ни в какое сравнение с организацией коры больших полушарий. Сложность коры проявляется не только и не столько в разнообразии микроскопического и субмикроскопического строения нервных клеток, сколько в особенностях их функциональной специализации, особенно в поверхностных слоях коры (Слоним Д., 1967; Эрман Л., Парсонс П., 1985; Mitchison G., 1992; Alvarez F.P., Destexhe A., 2004). Отличительной особенностью высших нервных центров млекопитающих является также весьма позднее их созревание в индивидуальном развитии. У человека к моменту рождения в терминальной коре лишь завершаются процессы миграции нейробластов и продолжаются процессы морфологической дифференцировки. Бурное созревание коры больших полушарий занимает весь первый год развития человека.
Сложное морфологическое строение нейронов предполагает и несколько стадий их дифференцировки. Весьма удачно они были классифицированы А.Г. Кнорре (1971). Руководствуясь данными других исследователей (Кнорре А.Г., 1971; Aguiar P., Willshaw D., 2004; Brette R., 2007) и собственными наблюдениями, можно предполагать следующие этапы дифференцировки нейронов. Матричные клетки нервной трубки и мозговых пузырей детерминируются в направлении ней-робластов и, проходя стадию разможения, мигрируют в закладки нервных центров. В эти сроки происходит детерминация in situ. По мере миграции нейробласт начинает формировать аксон, достигающий зон дефинитивных межнейронных коммуникаций. По мере развития дендритного дерева нейробласт начинает образовывать медиаторы (нередко несколько, часть из которых являются транзиторными). В эти же сроки происходит морфологическое созревание нейробласта с образованием юных нейронов, которые по мере достижения терминальной дифференцировки начинают синтезировать лишь один основной медиатор. В них развиваются дефинитивные синаптические аппараты, клетки достигают полной морфологической и функциональной зрелости. Как видно даже из упрощенного описания этого процесса, в каждом нейроне наблюдается несколько критических моментов в развитии, когда изменение внешних и внутренних условий может значимо изменить дальнейшее формирование нервной клетки, и происходит коммитирование генетического аппарата нейрона, сопровождающееся большим разнообразием его структурно-функциональных особенностей (Borrelli E. et al., 2008).
Таким образом, нейрон, являясь ведущим исполнителем основных функций нервной системы, одновременно имеет строение типичной эукариотической клетки с высоким уровнем структурнофункциональной специализации. Нейрон не является независимой системой, но весьма подвержен влиянию как клеток этой же популяции, так и прилежащего окружения. В то же время нейроны весьма разнообразны как по структурной, так и функциональной организации. Через описание и даже подробнейшее рассмотрение отдельного нейрона невозможно описать функцию всей системы в целом. Значима роль не только отдельного нейрона, но и взаимодействующей системы из нейронных ансамблей, неоднородных по качественной и количественной природе. Определенный интерес в этом отношении вызывает специализированная система межнейронных коммуникаций в виде синаптических контактов.
ВОПРОС№20
Помимо нейронов нервная ткань содержит клетки еще одного типа - клетки глии, глиальные клетки, или глия (от греч. "глия" - клей). Они выполняют опорную и защитную функции , а также участвуют в нейронофагии. По численности их в 10 раз больше, чем нейронов (10 в 13-ой и 10 в 12-ой степени, соответственно) и они занимают половину объема центральной нервной системы (ЦНС). Глиальные клетки окружают нервные клетки и играют вспомогательную роль Глиальные клетки более многочисленные, чем нейроны: составляют по крайней мере половину объема ЦНС ( рис. 1-18 ).
Существует несколько типов глии. Так одни глиальные клетки участвуют в поддержании состава межклеточной среды вокруг нейронов , другие образуют миелиновую оболочку вокруг аксонов , благодаря которой увеличивается скорость проведения потенциалов действия. Следовательно, не принимая прямого участия в краткосрочных коммуникативных процессах в нервной системе, клетки нейроглии способствуют осуществлению этой функции нейронами.
Таким образом, глия не только выполняет опорные функции, но и обеспечивает многообразные метаболические процессы в нервной ткани, а также способствует восстановлению нервной ткани после травм и инфекций.
Между нейронами и глиальными клетками существуют сообщающиеся между собой щели размером 15-20 нм, так называемое интерстициальное пространство , занимающее 12-14% общего объема мозга.
Глиальные клетки невозбудимы: во время деполяризации глиальных клеток проводимость их мембран не повышается.
Клетки нейроглии делятся на несколько типов. Клетки эпендимы выстилают желудочки головного мозга и спинномозговой канал и образуют эпителиальный слой в сосудистом сплетении . Они соединяют желудочки с нижележащими тканями.
Клетки макроглии делятся на две категории - астроциты и олигодендроциты .
Протоплазматические астроциты локализованы в сером веществе; от тела клетки, содержащей овальное ядро и большое количество гликогена , отходят сильно разветвленные короткие и толстые отростки.
Фибриллярные астроциты локализованы в белом веществе . Ядро у них также овальное, и тело клетки содержит много гликогена , но отростки длинные и менее разветвленные, некоторые ветви буквально упираются в стенки кровеносных сосудов. Эти клетки переносят питательные вещества из крови в нейроны.
Астроциты двух типов взаимосвязаны и образуют обширное трехмерное пространство, в которое погружены нейроны. Они часто делятся, образуя в случае повреждений центральной нервной ситемы рубцовую ткань.
Олигодендроциты локализованы в сером и белом веществе. Они мельче астроцитов и содержат одно сферическое ядро. От тела клетки отходит небольшое число тонких веточек, а само оно содержит цитоплазму с большим количеством рибосом. Шванновские клетки - это специализированные олигодендроциты, синтезирующие миелиновую оболочку миелинизированных волокон .
Клетки микроглии локализованы и в сером, и в белом веществе, но в сером веществе их больше. От каждого конца маленького продолговатого тела клетки, содержащей лизосомы и хорошо развитый аппарат Гольджи , отходит по толстому отростку. От всех его ветвей отходят более мелкие боковые веточки. При повреждении мозга эти клетки превращаются в фагоциты и, перемещаясь при помощи амебоидного движения, противостоят вторжению чужеродных частиц.
Глия является системой трофического обеспечения нервной системы , а также принимает активное участие в специфическом функционировании нервной ткани: в норме тормозит гиперактивность нейронов , способствует активному поглощению из синаптической щели и утилизации медиаторов и других агентов, участвующих в повреждении нейронов. В условиях ишемии микроглиальные клетки индуцируют синтез не только нейротоксичных веществ, но и сигнальных молекул, клеточных регуляторов, трофических факторов, способствующих выживаемости нейронов и уменьшающих процессы постишемического рубцевания
Микроглия - единственный иммунокомпетентный компартмент в центральной нервной системе
В ЦНС к нейроглии относятся астроциты и олигодендроциты, а в периферической нервной системе - шванновские клетки и клетки-сателлиты .
Клетки микроглии и эпендимы считаются центральными глиальными клетками ( рис. 32.7 , рис. 32.10 ).
ВОПРОС№23
Место, где окончание аксона сближается с дендритом или телом следующей в нейронной цепи нервной клетки, по предложению Ч. Шеррингтона (Sherrington Ch., 1857—1952), называется синапсом (от греч. sinapto — застежка, соединение). Конечные ветвления аксона — телодендрии заканчиваются утолщением (пресинаптическая пуговка), в котором содержатся митохондрии и пузырьки с квантами медиатора (рис. 2.7). Участок невролеммы пресинап-тической пуговки, особенно близко расположенный к структурам следующего нейрона, называется пресинаптической мембраной. Находящийся в непосредственной близости от него участок невролеммы последующего нейрона называется постсинаптической мембраной. Между пресинаптической и постсинаптической мембранами расположена узкая синаптическая щель (ширина ее приблизительно 200 А, или 0,02 мкм).
Когда нервный импульс доходит до пресинаптической пуговки, из расположенных в ней синаптических пузырьков в синаптическую щель выделяется квант нейромедиатора, который достигает постсинаптической мембраны и меняет ее проницаемость для находящихся вокруг положительно и отрицательно заряженных ионов, вызывая, таким образом, в расположенном по другую
Рис. 2.7. Синаптические процессы в возбужденном синапсе [По Л. Шельцыну, 1980). А — ацетат; X — холин; АХ — ацетилхолин; Хэ — холинэстераза; ВПСП — возбудительный постсинаптический потенциал.
сторону синаптической шели нейроне возникновение возбуждающего или тормозного постсинаптического потенциала. В результате нейромедиатор обеспечивает химическую передачу нервного импульса через синаптическую шель и, по сути, служит посредником для передачи нервного импульса от передающего его нейрона к воспринимающему.
Выделившиеся в синаптическую щель кванты медиатора отчасти возвращаются через пресинаптическую мембрану назад (обратный захват) в пресинап-тическую пуговку, отчасти медиатор разрушается в синаптической щели под влиянием определенного фермента. Например, в нервно-мышечном синапсе и в синаптическом аппарате других холинергических нейронов таким ферментом является антихолинэстераза. Функции медиаторов (нейротрансмиттеров) могут выполнять многие биологические вещества, чаще аминокислоты. По влиянию на синаптические аппараты нейротрансмиттеры могут быть разделены на возбуждающие и тормозные. К возбуждающим относится глутамат и аспартат, а к тормозным — ГАМК и глицин. Кроме того, выделяется группа нейротрансмиттеров, состоящая главным образом из моноаминов (дофамин, норадреналин, серторонин), при этом одни и те же нейротрансмиттеры могут, воздействуя на одни нейроны, оказывать возбуждающее действие, тогда как влияние их на другие нейроны может быть тормозным. Так, ацетилхолин нервно-мышечного синаптического аппарата возбуждает мышечные волокна, а ацетилхолин как медиатор стриопаллидарных нейронов обеспечивает тормозное влияние на клетки бледного шара.
Помимо трансмиттеров, на синаптическую передачу могут оказывать усиливающее или ослабляющее действие нейромодуляторы (эндорфины, сома-тостатин, субстанция Р) и нейрогормоны (ангиотензин, вазопрессин и др.), которые, однако, сами по себе не создают деполяризационного эффекта. Нейрогормоны попадают в кровяное русло и разносятся с кровью на большие расстояния. Их действие уступает модуляторам по темпу, но проявляется длительнее.
Синапсы обеспечивают регуляцию потока нервных импульсов и определяют проведение их всегда в одном направлении. Цепи нейронов, по которым определенные нервные импульсы проходят в одном направлении, формируют проводящие пути. Проводящий путь может состоять из гетерогенных по характеру выделяемого медиатора нейронов. Химическая передача нервного импульса через синаптический аппарат была доказана в 1921 г. австрийским нейрофизиологом О. Леви
ВОПРОС№24
Одностороннее проведение
Это свойство обусловлено направлением потока медиатора— он выделяется из пресинаптического окончания и действует на постсинаптические рецепторы.
Синаптическая задержка
Это свойство обусловлено сравнительно длительным временем, необходимым для выделения медиатора, его диффузии к рецепторам, активации рецепторов и последующих постсинаптических процессов
Низкая лабильность
Мерой лабильности (см. выше, разд. «Возбудимость»)— служит максимальная частота импульсов, которую может воспроизвести та или иная ткань. В нервных клетках лабильность ограничена временем периода рефрактерности; поскольку этот период короткий (около 1 мс), лабильность нервных клеток высока. Синапсы же становятся готовы к проведению очередного сигнала лишь после того, как будет инактивирована очередная порция медиатора, на что требуется достаточно большое время; таким образом, лабильность синапса ограничена временем полного оборота медиатора (медиаторного цикла). Следовательно, синапсы могут проводить лишь импульсы низкой частоты, то есть обладают низкой лабильностью.
Высокая утомляемость
Утомляемость заключается в снижении величины реакции клетки при длительном раздражении. Ее причина — исчерпание ресурсов клетки, накопление метаболитов и пр. В нервных клетках теоретически при чрезвычайно длительном раздражении могут выравниваться концентрации ионов во внутренней и наружной среде, но практически это невозможно благодаря работе ионных насосов. В синапсе же при длительном раздражении могут истощаться запасы медиатора, и тогда развивается утомление.
ВОПРОС№25
Медиаторы - довольно разнородная группа веществ. В настоящее время идентифицировано около 100 веществ, которые выполняют роль медиатора: моноамины, аминокислоты, нейропептиды (вещество Р, метэнкефалин, лейэнкефалин, эндорфин, нейротензин, АКТГ, ангиотензин, окситоцин, вазопрессин, вазоактивный кишеч¬ный пептид, соматостатин, тиролиберин, бомбезин, холецистокининоподобный пептид, карнозин).
Низкомолекулярные медиаторы синтезируются в пресинаптических нейронах и накапливаются в их везикулах. Синтез медиаторов происходит из соответствующих предшественников и требует энергии. Он протекает в соме нейрона, откуда везикулы перемещаются к нервным окончаниям.
Благодаря исследованиям последних десятилетий довольно простая схема химической синаптической передачи значительно усложнилась. Появление иммунохимических методов позволило показать, что в одном синапсе могут сосуществовать несколько групп медиато¬ров, а не один, как это предполагали раньше. Например, в одном синаптическом окончании одновременно могут находиться синаптические пузырьки, содержащие ацетилхолин и норадреналин, которые довольно легко идентифицируются на электронных фотографиях (ацетилхолин содержится в прозрачных пузырьках диаметром около 50 нм, а норадреналин — в электронно-плотных пузырьках диаметром до 200 нм). Кроме классических медиаторов, в синаптическом окончании могут находиться один или несколько нейропептидов. Количество веществ, содержащихся в синапсе, может доходить до 5-6 (своеобразный коктейль). Более того, медиаторная специфичность синапса может меняться в онтогенезе. Например, нейроны симпатических ганглиев, иннервирующие потовые железы у млекопитающих, исходно норадренергичны, но у взрослых животных становятся холинергичными.
В настоящее время при классификации медиаторных веществ принято выделять: первичные медиаторы, сопутствующие медиаторы, медиаторы-модуляторы и аллостерические медиаторы. Первичными медиаторами считают те, которые действуют непосредственно на рецепторы постсинаптической мембраны. Сопутствующие медиаторы и медиаторы-модуляторы могут запускать каскад ферментативных реакций, которые, например, изменяют чувствительность рецептора к первичному медиатору. Аллостерические медиаторы могут участвовать в кооперативных процессах взаимодействия с рецепторами первичного медиатора.
Долгое время за образец принимали синаптическую передачу по анатомическому адресу (принцип «точка — в точку»). Открытия последних десятилетий, особенно медиаторной функции нейропептидов, показали, что в нервной системе возможен принцип передачи и по химическому адресу. Другими словами, медиатор, выделяющийся из данного окончания, может действовать не только на «свою» постсинаптическую мембрану, но и за пределами данного синапса — на мембраны других нейронов, имеющих соответствующие рецепторы. Таким образом, физиологическая реакция обеспечивается не точным анатомическим контактом, а наличием соответствующего рецептора на клетке-мишени. Собственно этот принцип был давно известен в эндокринологии, а исследования последних лет нашли ему более широкое применение.
Все известные типы хеморецепторов на постсинаптической мембране разделяют на две группы. В одну группу входят рецепто¬ры, в состав которых включен ионный канал, открывающийся при связывании молекул медиатора с «узнающим» центром. Рецепто¬ры второй группы (метаботропные рецепторы) открывают ионный канал опосредованно (через цепочку биохимических реак¬ций), в частности, посредством активации специальных внутриклеточных белков (G-белков).
Одними из самых распространенных являются медиаторы, принадлежащие к группе биогенных аминов. Эта группа медиаторов достаточно надежно идентифицируется микрогистологическими методами. Известны две группы биогенных аминов: катехоламины (дофамин, норадреналин и адреналин) и индоламин (серотонин). Функции биогенных аминов в организме весьма многообразны: медиаторная, гормональная, регуляция эмбриогенеза.
Основным источником норадренергических аксонов являются нейроны голубого пятна и прилежащих участков среднего мозга. Аксоны этих нейронов широко распространяются в мозговом стволе, мозжечке, в больших полушариях. В продолговатом мозге крупное скопление норадренергических нейронов находится в вентролатеральном ядре ретикулярной формации. В промежуточном мозге (гипоталамусе) норадренергические нейроны наряду с дофаминергическими нейронами входят в состав гипоталамо-гипофизарной системы. Норадренергические нейроны в большом количестве содержатся в периферической нервной системе. Их тела лежат в симпатической цепочке и в некоторых интрамуральных ганглиях.
ДОФАМИН - присутствует в "центрах удовольствия" лимбической сис¬темы и некоторых ядрах ретикулярной формации, где он участвует в процессах избирательного внимания. Много дофаминергических нейронов у млекопитающих находится в среднем мозге (так называемая нигро-неостриарная система), а также в гипоталамической области. Дофаминовые цепи мозга млекопитающих хорошо изучены. Известны три главные цепи, все они состоят из однонейронной цепочки. Тела нейронов находятся в мозговом стволе и отсылают аксоны в другие области головного мозга.
Одна цепь очень проста. Тело нейрона находится в области гипоталамуса и отсылает короткий аксон в гипофиз. Этот путь входит в состав гипоталамо-гипофизарной системы и контролирует систему эндокринных желез.
Вторая дофаминовая система также хорошо изучена. Это черная субстанция, многие клетки которой содержат дофамин. Аксо¬ны этих нейронов проецируются в полосатые тела. Эта система содержит примерно 3/4 дофамина головного мозга. Она имеет решающее значение в регулировании тонических движений. Дефицит дофамина в этой системе приводит к болезни Паркинсона. Известно, что при этом заболевании происходит гибель нейронов черной субстанции. Введение L-DОРА (предшественника дофамина) облегчает у больных некоторые симптомы заболевания.
Третья дофаминергическая система участвует в проявлении шизофрении и некоторых других психических заболеваний. Функции этой системы пока изучены недостаточно, хотя сами пути хорошо известны. Тела нейронов лежат в среднем мозге рядом с черной субстанцией. Они проецируют аксоны в вышележащие структуры мозга, мозговую кору и лимбическую систему, особенно к фронтальной коре, к септальной области и энторинальной коре. Энторинальная кора, в свою очередь, является главным источником проекций к гиппокампу.
Согласно дофаминовой гипотезе шизофрении, третья дофаминергическая система при этом заболевании сверхактивна. Эти представления возникли после открытия веществ, снимающих некоторые симптомы заболевания. Например, хлорпромазин и галоперидол имеют разную химическую природу, но они одинаково подавляют активность дофаминергической системы мозга и проявление некоторые симптомов шизофрении. У больных шизофренией, в течение года получавших эти препараты, появляются двигательные нарушения, получившие название tardive dyskinesia (повторяющиеся причудливые движения лицевой мускулатуры, включая мускулатуру рта, которые больной не может контролировать).
СЕРОТОНИН - в стволе мозга регулирует сон и определяет объем информации в сенсорных путях, идущих к коре мозга (ограничивает ее). Оказывает контролирующее влияние на активность спинного мозга. В гипоталамусе контролирует температуру тела.
Серотонин почти одновременно открыли в качестве сыворо¬точного сосудосуживающего фактора (1948) и энтерамина, секретируемого клетками слизистой оболочки кишечника. В 1951 г. было расшифровано химическое строение серотонина и он получил новое название — 5-гидрокситриптамин. В организме млекопитающих он образуется гидроксилированием аминокислоты триптофана с последующим декарбоксилированием. 90% серотонина образуется в организме энтерохромаффиновыми клетками слизистой оболочки всего пищеварительного тракта. Внутриклеточный серотонин инактивируется моноаминоксидазой, содержащейся в митохондриях.
Серотонинергические нейроны широко распространены в центральной нервной системе . Они обнаруживаются в составе дорсального и медиального ядер шва продолговатого мозга, а также в среднем мозге и варолиевом мосту. Серотонинергические нейроны иннервируют обширные области мозга, включающие кору больших полушарий, гиппокамп, бледный шар, миндалину, область гипоталамуса. Интерес к серотонину был привлечен в связи с проблемой сна. При разрушении ядер шва животные страдали бессонницей. Сходный эффект оказывали вещества, истощающие хранилище серотонина в мозге.
Самая высокая концентрация серотонина обнаружена в эпифизе. Серотонин в эпифизе превращается в мелатонин, который участвует в пигментации кожи, а также влияет у многих животных на активность женских гонад. Содержание как серотонина, так и мелатонина в эпифизе контролируется циклом свет—темнота через симпатическую нервную систему.
Другую группу медиаторов ЦНС составляют аминокислоты. Уже давно известно, что нервная ткань с ее высоким уровнем метабо¬лизма содержит значительные концентрации целого набора аминокислот (перечислены в порядке убывания): глутаминовой кис¬лоты, глутамина, аспарагиновой кислоты, гамма-аминомасляной кислоты (ГАМК).
Глутамат в нервной ткани образуется преимущественно из глюкозы. У млекопитающих больше всего глутамата содержится в ко¬нечном мозге и мозжечке, где его концентрация примерно в 2 раза выше, чем в стволе мозга и спинном мозге. В спинном мозге глутамат распределен неравномерно: в задних рогах он находится в большей концентрации, чем в передних. Глутамат является одним из самых распространенных медиаторов в ЦНС.
Из тормозных медиаторов ГАМК является самой распространенной в ЦНС. Она синтезируется из L-глутаминовой кислоты. Известно два типа ГАМК-рецепторов на постсинаптической мембране: ГАМК-А (открывает каналы для ионов хлора) и ГАМК-Б (открывает в зависи¬мости от типа клетки каналы для К или Са). Интересно, что в их состав входит бензодиазипиновый рецептор, наличием которого объясняют действие так называемых малых (дневных) транквилизаторов (седуксена, тазепама и др.). Прекращение действия медиатора в ГАМК-синапсах происходит по принципу обратного всасывания (молекулы медиатора специальным механизмом поглощаются из синаптической щели в цитоплазму нейрона). Из антагонистов ГАМК хорошо известен бикукулин. Он хорошо проходит через гематоэнцефалический барьер, оказывает сильное воздействие на организм даже в малых дозах, вызывая конвульсии и смерть. ГАМК обнаруживается в ряде нейронов мозжечка (в клетках Пуркинье, клетках Гольджи, корзинчатых клетках), нейронах гиппокампа (в корзинчатых клетках), в обонятельной луковице и черной субстанции.
Идентификация ГАМК-цепей мозга трудна, так как ГАМК — обычный участник метаболизма в ряде тканей организма. Метабо¬лическая ГАМК не используется как медиатор, хотя в химическом отношении их молекулы одинаковы. ГАМК определяется по фериенту декарбоксилазе. Метод основан на получении у животных антител к декарбоксилазе (антитела экстрагируют, метят и вводят в мозг, где они связываются с декарбоксилазой).
Другим известным тормозным медиатором является глицин. Глицинергические нейроны находятся главным образом в спин¬ном и продолговатом мозге. Считают, что эти клетки выполняют роль тормозных интернейронов.
Ацетилхолин — один из первых изученных медиаторов. Он чрез¬вычайно широко распространен в периферической нервной сис¬теме. Примером могут служить мотонейроны спинного мозга и нейроны ядер черепных нервов. Как правило, холинергические цепи в мозге определяют по присутствию фермента холинэстеразы. В го¬ловном мозге тела холинергических нейронов находятся в ядре перегородки, ядре диагонального пучка (Брока) и базальных ядрах. Нейроанатомы считают, что эти группы нейронов формируют фактически одну популяцию холинергических нейронов: ядро переднего мозга, базальное ядро (оно расположено в базальной части переднего мозга). Аксоны соответствующих нейронов проецируются к структурам переднего мозга, особенно в новую кору и гиппокамп. Здесь встречаются оба типа ацетилхолиновых рецепторов (мускариновые и никотиновые), хотя считается, что мускариновые рецепторы доминируют в более рострально расположенных мозговых структурах. По данным последних лет складывается впечатление, что ацетилхолиновая система играет большую роль в процессах, связанных с высшими интегративными функциями, которые требуют участия памяти. Например, показано, что в мозге больных, умерших от болезни Альцгеймера, наблюдается массивная утрата холинергических нейронов в базальных ядрах.
ОПИАТНЫЕ РЕЦЕПТОРЫ И ОПИОИДЫ МОЗГА
Морфин и кодеин — два активных ингредиента морфия. Мор¬фин был очищен в XIX веке и стал широко применяться в медицине. Механизм действия морфина на мозг довольно хорошо изучен благодаря тому, что было синтезировано вещество налоксон, которое является специфическим антагонистом морфина. Сам по себе налоксон неактивен, но действие введенного на его фоне морфина не проявляется. То, что налоксон имеет химическую структуру, похожую на морфин, и является его специфическим антагонистом, предполагает наличие на мембране специфических для морфина рецепторов. Использование меченого налоксона показало его специфическое связывание на рецепторах нейронов областей мозга, имеющих отношение к боли. Из мозга голубей было выделено вещество, получившее название энкефалин (т. е. морфин мозга), обладающее свойством морфина. В дальнейшем были открыты другие опиоиды мозга. Эту группу веществ в целом называют эндорфинами.
В настоящее время установлено, что синтез нейропептидов состоит в образовании относительно больших пептидов-предшественников, из которых после завершения трансляции выщепляются протеазами соответствующие нейропептиды. В состав такого пептида-предшественника входят обычно несколько последовательностей нейропептидов, а также так называемая сигнальная пос¬ледовательность, способствующая миграции предшественника в цитоплазме клетки, после того как его синтез закончился на мембранах эндоплазматического ретикулума. В настоящее время известны следующие нейропептиды: 1) опиоидные пептиды — энкефалины, эндорфины, динорфины; 2) тахикинины — вещество Р, нейрокинин А, нейромедин К; 3) нейротензин; 4) вазоактивный интестинальный полипептид; 5) соматостатин; 6) холицистокинин; 7) нейропептид V; 8) гастрин; 9) вазопрессин; 10) окситоцин; 11) бомбезин; 12) тиротропин; 13) ангиотензин.
Изучение нейромедиаторов еще только начинается.
Принципы действия психотропных препаратов
Сложные формы синаптических связей, формирующихся по мере развития мозга, составляют основу всех функций нейрона – от сенсорной перцепции до обучения и памяти. С другой стороны, дефекты синаптической передачи лежат в основе многих заболеваний нервной системы.
Известно довольно много фармакологических соединений, способных модифицировать работу синапсов. Например, ботулиновый токсин блокирует секрецию ацетилхолина в нервно-мышечных синапсах, альфа-бунгаротоксин, содержащийся в яде змей, блокирует рецепторы ацетилхолина в тех же синапсах, стрихнин блокирует рецепторы глицина в синапсах ЦНС.
Многие психотропные препараты действуют на уровне синапсов и тех процессов, в которых участвуют нейромедиаторы и модуляторы. Молекулы этих препаратов схожи по своей химической структуре с молекулами меди¬аторов, что позволяет им вмешиваться в синаптические процессы и изменять их. Т.о. они могут нарушить действие истинных медиаторов. Они ли¬бо занимают место на рецепторных участках, либо мешают их разрушению, или препятствуя обратному всасыванию.
Установлено, например, что ЛСД, занимая серотониновые рецепторы, мешает серотонину затормаживать приток сенсорных импульсов. Т.о. ЛСД открывает доступ разнообразных, даже чрезвычайно слабых сенсорных импульсов к сознанию.
КОКАИН усиливает эффекты дофамина, занимая его место в рецепторных участках. Подобным образом действует МОРФИН и другие ОПИАТЫ, мгновенный эффект которых объясняется тем, что они быстро успевают занять рецепторы для эндорфинов. По схожему механизму действует антипсихотический препарат галоперидол.
Действие АМФЕТАМИНОВ обусловлено тем, что они подавляют обратное поглощение норадреналина пресинаптическими окончаниями. В результате избыточное накопление этого медиатора в синаптической щели приводит к чрезмерной степени бодрствования мозговой коры. Также действуют антидепрессанты (имипрамин).
Эффекты ТРАНКВИЛИЗАТОРОВ объясняются главным образом их облегчающим влиянием на ГАМК в лимбической системе, что приводит к усилению тормозных эффектов этого медиатора.
Наоборот, как антидепрессанты действуют главным образом соединения, инактивирующие ГАМК, или такие препараты как ингибиторы МАО.
ВОПРОС№26
Проявление и осуществление рефлекса возможно только при ограничении распространения возбуждения с одних нервных центров на другие. Это достигается взаимодействием возбуждения с другим нервным процессом, противоположным по эффекту процессом торможения.
Почти до середины XIX века физиологи изучали и знали только один нервный процесс - возбуждение.
Торможение в ЦНС открыл И.М.Сеченов (1863). Значение этого процесса было рассмотрено в его книге "Рефлексы головного мозга". В опыте на таламической лягушке он определял латентное время сгибательного рефлекса при погружении задней конечности в слабый раствор серной кислоты. Было показано, что латентное время рефлекса значительно увеличивается, если на зрительный бугор предварительно положить кристаллик поваренной соли. Открытие И.М.Сеченова послужило толчком для дальнейшего исследования торможения с ЦНС. В частности, обнаружил проявление торможения у спинальной лягушки Ф.Гольц (1870). Он также исследовал латентное время рефлекса. При этом оказалось, что механическое раздражение кончиков пальцев одной конечности лягушки существенно удлиняет латентный период сгибательного рефлекса другой конечности при погружении ее в раствор кислоты. Наличие специальных тормозных структур в продолговатом мозге доказал Х.Мегун (1944). В опытах на кошках при изучении разгибательного рефлекса Х.Мегун установил, что раздражение медиальной части ретикулярной формации продолговатого мозга тормозит рефлекторную активность спинного мозга.
^ Торможение – активный нервный процесс, результатом которого является прекращение или ослабление возбуждения. Торможение всегда возникает как следствие возбуждения.
Тонкий анализ тормозных явлений в ЦНС позволил выделить две разновидности торможения:
Постсинаптическое торможение;
Пресинаптическое торможение.
Одна из характерных черт тормозного процесса- отсутствие способности к активному распространению по нервным структурам.
Торможение играет важную роль в координации движений, регуляции вегетативных функций, в реализации процессов высшей нервной деятельности.
^ 1.ПОСТСИНАПТИЧЕСКОЕ ТОРМОЖЕНИЕ
Этот вид торможения открыл Д.Экклс (1952) при регистрации потенциалов мотонейронов спинного мозга у кошки во время раздражения мышечных афферентов группы Ia. При этом оказалось, что в мотонейронах мышцы антогониста регистрируются не деполяризация и возбуждение, а гиперполяризационный постсинаптический потенциал, уменьшающий возбудимость мотонейрона, угнетающий его способность реагировать на возбуждающие явления. По этой причине вызванный гиперполяризационный потенциал был назван тормозным постсинаптическим потенциалом, ТПСП.
У кошки ТПСП регистрируется на 0,5 мс позже, чем ВПСП, что объясняется наличием на пути проведения возбуждения, запускающего ТПСП, одного дополнительного синапса. Амплитуда ТПСП – 1-5 мВ. Он способен суммироваться; более мощный эфферентный залп вызывает возрастание амплитуды ТПСП.
Механизм постсинаптического торможения. Возбудимость клетки от ТПСП (гиперполяризованного постсинаптического потенциала) уменьшается, потому что увеличивается пороговый потенциал (∆V), так как Екр. (критический уровень деполяризации, КУД) остается на прежнем уровне, а мембранный потенциал (Е0) возрастает. ТПСП возникает опд влиянием аминокислоты глицина, и ГАМК – гамма-аминомасляной кислоты. В спинном мозге глицин выделяется особыми тормозными клетками (клетки Реншоу) в синапсах, образуемых этими клетками на мембране нейрона-мишени. Действуя на ионотропный рецептор постсинаптической мембраны, глицин увеличивает ее проницаемость для CI-, при .том CI- поступает в клетку согласно концентрационному градиенту, в результате чего развивается гиперполяризация. В бесхлорной среде тормозная роль глицина не реализуется. Ареактивность нейрона к возбуждающим импульсам является следствием алгебраической суммации ТПСП и ВПСП, в связи с чем в зоне аксонного холмика не происходит выведения мембранного потенциала ‑
на критический уровень. При действии ГАМК на постсинаптическую мембрану ТПСП развивается в резельтате входа CI- в клетку или выхода К+ из клетки. Имеются ГАМК-рецепторы двух видов: ГАМК1 (ГАМКА) и ГАМК2 (ГАМКВ). Активация ГАМК1-рецепторов ведет к непосредственному повышению проницаемости клеточной мембраны для хлора. Активация ГАМК2-рецепторов реализуется с помощью вторых посредников (цАМФ), при этом повышается проницаемость для К+ и понижается для Са2+.
Как известно К+ транспортируется обратно в клетку Na/K – помпой, сто и поддерживает градиент его концентрации.
По-видимому, и CI- транспортируется в этом случае из клетки специальной хлорной помпой, хотя обычно отмечают, что градиент концентрации CI- поддерживается отрицательным электрическим зарядом внутри клетки - CI- выталкивается отрицательным электрическим зарядом. Поскольку возникновение ТПСП обеспечивается выходом CI- в клетку, что доказывает, что концентрационный градиент действует сильнее противоположно направленного электрического градиента. Отсутствие CI-помпы привело бы к накоплению CI- в клетке, наступлению равновесия между электрическим и химическим (концентрационным) градиентами для CI- и нарушению процесса торможения. Но этого не происходит, что подтверждает наличие хлорной помпы.
Как выяснилось, ТПСП могут возникать вследствие уменьшения проницаемости мембраны для Na+, что также сопровождается гиперполяризацией клеточной мембраны, особенно если проницаемость для К+ и CI- сохраняется прежней. Такого рода ТПСП были зарегистрированы в нейронах симпатических ганглиев.
Разновидности постсинаптического торможения. Обычно выделяют возвратное, латеральное, параллельное и прямое (реципрокное) постсинаптическое торможение. Имеются и другие варианты классификаций. ‑
Некоторые авторы называют только два торможения – возвратное и прямое, последнее трактуется по-разному. В реальной действительности вариантов торможения больше, они определяются множеством связей различных нейронов в частности их коллатералей.
1.Возвратное постсинаптическое торможение – торможение, при котором тормозные вставочные нейроны действуют на те же нервные клетки, которые их активируют. В этом случае развивающееся торможение бывает тем глубже, чем сильнее было предшествующее возбуждение. Типичным примером возвратного постсинаптического торможения является торможение в мотонейронах спинного мозга. Мотонейроны посылают коллатерали к тормозным вставочным нейронам, аксоны которых в свою очередь образуют синапсы на тех же мотонейронах, которые возбуждают тормозную клетку Решоу. Такая тормозная цепь называется торможением Реншоу – в честь ученого, который ее открыл, а тормозные вставочные нейроны в этой цепи – клетками Реншоу. Это торможение в центрах мышц-сгибателей и разгибателей обеспечивает, например, поочередное сокращение и расслабление скелетной мышцы, что необходимо при ходьбе и беге. Сама клетка Реншоу возбуждается под влиянием ацетилхолина с помощью Н-холинорецептора.
2.Параллельное торможение может выполнять подобную же роль, когда возбуждение блокирует само себя, за счет дивергенции по коллатерали с включением тормозной клетки на своем пути и возвратом импульсов к нейрону, который активировался этим же возбуждением.
3.Латеральное постсинаптическое торможение. Тормозные вставочные нейроны соединены таким образом, что они активируются импульсами от возбужденного центра и влияют на соседние клетки с такими же функциями. В результате в этих соседних клетках развивается очень глубокое торможение. Торможение такого типа называется латеральным потому, что образующаяся зона торможения находится «сбоку» по ‑
отношению к возбужденному нейрону и инициируется им. Латеральное торможение играет особенно важную роль в афферентных системах. Латеральное торможение может образовать тормозную зону, которая окружает возбуждающие нейроны.
4.Примером прямого торможения может служить реципрокное торможение. Оно вызывает угнетение центра-антагониста. Например, при раздражении кожных рецепторов возникает защитный сгибательный рефлекс: центр сгибания возбужден, а центр разгибания заторможен. В этом случае возбуждающие импульсы поступают к центру мышцы-сгибателя, а через тормозную клетку Реншоу – к центру мышцы-антагониста – разгибателю, что предотвращает ее сокращение. Если бы возбуждались одновременно центры мышц сгибателей и разгибателей, сгибание конечности в суставе было бы невозможным.
^ 2.ПРЕСИНАПТИЧЕСКОЕ ТОРМОЖЕНИЕ
Открытие. Пресинаптическое торможение первоначально выявлено также в спинном мозге в опыте с регистрацией активности мотонейронов моносинаптической рефлекторной дуги при раздражении антагонистических мышечных нервов. Так, известно, что раздражение первичных афферентов мышечных веретен сопровождается возбуждением гомонимных α-мотонейронов (α-мотонейронов этой же мышцы). Однако опережающее раздражение афферентов сухожильных рецепторов мышц-антагонистов предотвращает возбуждение активируемых α-мотонейронов. Мембранный потенциал и возбудимость исследуемых α-мотонейронов не изменялись либо регистрировался низкоамплитудный ВПСП, недостаточный для возникновения ПД. Поскольку в опыте исследовались мотонейроны в составе моносинаптической рефлекторной дуги, было очевидно: они возбуждаются вследствие процессов, происходящих в пресинаптическом окончании, что определяет название этого вида торможения.
Механизм пресинаптического торможения. Электрофизиологическое изучение процессов на уровне пресинаптических окончаний в вышеописанном опыте показало, что здесь регистрируется выраженная и продолжительная деполяризация, что ведет к развитию торможения. В очаге деполяризации нарушается процесс распространения возбуждения – следовательно, поступающие импульсы, не имея возможности пройти зону деполяризации в обычном количестве и обычной амплитуде, не обеспечивают выделения медиатора в синаптическую щель в достаточном количестве, поскольку мало ионов Ca2+ входит в нервное окончание – нейрон не возбуждается, его функциональное состояние, естественно, остается неизменным. Деполяризацию пресинаптической терминали вызывают специальные тормозные вставочные клетки, аксоны которых образуют синапсы на пресинаптических окончаниях аксона-мишени. Торможение (деполяризация) после одного афферентного залпа продолжается 300-400 мс, медиатором является гамма-аминомасляная кислота (ГАМК), которая действует на ГАМК1 – рецепторы.
Деполяризация является следствием повышения проницаемости для CI- , в результате чего он выходит из клетки. По-видимому, в составе мембран пресинаптических терминалей имеется хлорный насос, обеспечивающий первичный транспорт CI- внутрь клетки вопреки электрическому градиенту. Под действием ГАМК тормозных нейронов и последующего повышения проницаемости мембраны для CI- ионы CI- начинают выходить наружу согласно электрическому градиенту, но вопреки концентрационному. Это приводит к деполяризации пресинаптических терминалей и ухудшению их способности проводить импульсы.
Полагают также, что деполяризация пресинаптических терминалей может возникнуть при накоплении К+ в межклеточной жидкости в результате повышенной активности нервных окончаний и соседних нервных клеток. В этом случае также ухудшается проводимость пресинаптических терминалей из-за устойчивого снижения мембранного потенциала в связи с уменьшением концентрационного градиента для К +. Роль ГАМК2 – рецепторов на пресинаптических окончаниях изучена недостаточно.
Разновидности пресинаптического торможения изучены недостаточно. По-видимому, имеются те же варианты, что и для пресинаптического торможения. Однако возвратного персинаптического торможения на уровне спинного мозга (по типу возвратного постсинаптического торможения) у млекопитающих обнаружить не удалось, хотя у лягушек оно выявлено.
В реальной действительности взаимоотношения возбуждающих и тормозных нейронов значительно сложнее, тем не менее все варианты пре- и постсинаптического торможения можно объединить в две группы:
Когда блокируется собственный путь самим распространяющимся возбуждением с помощью вставных клеток (параллельное и возвратное торможение);
Когда блокируются другие нервные элементы под влиянием импульсов от соседних возбуждающих нейронов с включением тормозных клеток (латеральное и прямое торможение).
Поскольку тормозные клетки сами могут быть заторможены другими тормозными нейронами (торможение), это может облегчить распространение возбуждения.
^ 3.РОЛЬ РАЗЛИЧНЫХ ВИДОВ ТОРМОЖЕНИЯ И ИХ ЛОКАЛИЗАЦИЯ В ЦНС‑
Пре- и постсинаптическое торможение широко представлено в различных отделах ЦНС: в частности, глицин – медиатор постсинаптического торможения, кроме клеток Реншоу, обнаружен в стволе мозга. ГАМК1 – рецепторы локализованы на нейронах гиппокампа, мозжечка, гипоталамуса, коры большого мозга, аксонах первичных афферентных клеток. ГАМК2 – рецепторы расположены в основном на терминалях моноаминергических нервных волокон и при возбуждении тормозят секрецию медиатора. ГАМКергические интернейроны составляют основную массу тормозных нейронов ЦНС. ГАМК повсеместно «сопровождает» глутамат, прекращая его возбуждающее действие. Оба вида торможения могут быть заблокированы: постсинаптическое – стрихнином; пресинаптическое – бикукуллином. Постсинаптическое и пресинаптическое торможение блокируется также токсином, который нарушает высвобождение тормозных медиаторов.
В заключении необходимо отметить, что в приведенную классификацию видов торможения следует внести изменения. Это связано с тем, что ГАМК-рецепторы локализуются также, кроме пресинаптических терминалей, на нервных волокнах и вне синапсов, на соме и дендритах нейронов, т.е. являются постсинаптическими.
В последние годы обнаружены тормозные нейроны, в которых из одного и того же нервного окончания выделяются два медиатора – ГАМК и глицин. Этот вариант тормозных нейронов встречается наиболее часто в спинном мозге и стволе мозга. Таким образом, в настоящее время известно три вида тормозных вставочных нейронов: глицинергические, вызывающие постсинаптическое торможение, ГАМКерические нейроны, вызывающие пре- и постсинаптическое торможение, и тормозные нейроны смешанного типа, выделяющие два медиатора – глицин и ГАМК. Поэтому классифицировать торможение необходимо по двум признакам: по локализации (пре- и постсинаптическое) и по природе нейронов (глицинергическое, ГАМКерическое и смешанное, табл.1).
Иногда в качестве разновидности центрального торможения выделяют торможение вслед за возбуждением. С точки зрения имеющихся фактов особым механизмом торможения его считать нельзя, поскольку оно является результатом следовой гиперполяризации нейронов. Если же выделять этот вид торможения, то его необходимо назвать «следовым торможением» - как результат следовой гиперполяризации нейрона. Пессимальное торможение (пессимум Введенского), наблюдаемое в эксперименте на нервно-мышечном препарате, в ЦНС в физиологических условиях, по-видимому, не встречается.
^ Роль торможения.
1.Оба известных вида торможения со всеми из разновидностями выполняют охранительную роль. Отсутствие торможения привело бы к истощению медиаторов в аксонах нейронов и прекращению деятельности ЦНС.
2.Торможение играет важную роль в обработке поступающей в ЦНС информации. Особенно ярко выражена эта роль у пресинаптического торможения. Оно более точно регулирует процесс возбуждения, поскольку этим торможением могут быть заблокированы отдельные нервные волокна. К одному возбуждающему нейрону могут подходить сотни и тысячи импульсов по разным терминалям. Вместе с тем число дошедших до нейрона ‑
импульсов определяется пресинаптическим торможением. Торможение латеральных путей обеспечивает выделение существенных сигналов из фона.
3.Поскольку блокада торможения ведет к широкой иррадиации возбуждения и судорогам (например, при выключении пресинаптического торможения бикукуллином), следует признать, что торможение является важным фактом обеспечения координационной деятельности ЦНС.
ЗАКЛЮЧЕНИЕ
Нормальная деятельность отдельных нервных центров и ЦНС в целом может осуществляться лишь при обязательном участии тормозных процессов.
Торможение в ЦНС — это активный процесс, проявляющийся в подавлении или ослаблении возбуждения.
Обеспечивает (вместе с возбуждением) нормальную деятельность всех органов и организма в целом. Имеет охранительное значение (в первую очередь для нервных клеток коры головного мозга), защищая нервную систему от перевозбуждения.
Торможение может наступить не только в результате непосредственного воздействия на нервные центры, но и на рецепторы.
Если в ЦНС поступают импульсы из разных рецептивных полей, то более сильные раздражения угнетают слабые и рефлекс на последние тормозится. Таким образом, процесс торможения тесно связан с процессом возбуждения.
Торможение в норме неразрывно связано с возбуждением, является его производным, сопутствует возбудительному процессу, ограничивая и препятствуя чрезмерному распространению последнего. При этом торможение часто ограничивает возбуждение и вместе с ним формирует сложную мозаику активированных и заторможенных зон в центральных нервных структурах. Формирующий эффект тормозного процесса развивается в пространстве и во времени. Торможение — врожденный процесс, постоянно совершенствующийся в течение индивидуальной жизни организма.
ВОПРОС№27
Основные методы исследования ЦНС и нервно-мышечного аппарата — электроэнцефалография (ЭЭГ), реоэнцефалография (РЭГ), электромиография (ЭМГ), определяют статическую устойчивость, тонус мышц, сухожильные рефлексы и др.
Электроэнцефалография (ЭЭГ) — метод регистрации электрической активности (биотоков) мозговой ткани с целью объективной оценки функционального состояния головного мозга. Она имеет большое значение для диагностики травмы головного мозга, сосудистых и воспалительных заболеваний мозга, а также для контроля за функциональным состоянием спортсмена, выявления ранних форм неврозов, для лечения и при отборе в спортивные секции (особенно в бокс, карате и другие виды спорта, связанные с нанесением ударов по голове). При анализе данных, полученных как в состоянии покоя, так и при функциональных нагрузках, различных воздействиях извне в виде света, звука и др.), учитывается амплитуда волн, их частота и ритм. У здорового человека преобладают альфа-волны (частота колебаний 8—12 в 1 с), регистрируемые только при закрытых глазах обследуемого. При наличии афферентной световой импульсации открытые глаза, альфа-ритм полностью исчезает и вновь восстанавливается, когда глаза закрываются. Это явление называется реакцией активации основного ритма. В норме она должна регистрироваться. Бета-волны имеют частоту колебаний 15—32 в 1 с, а медленные волны представляют собой тэта-волны (с диапазоном колебаний 4—7 с) и дельта — волны (с еще меньшей частотой колебаний). У 35—40% людей в правом полушарии амплитуда альфа-волн несколько выше, чем в левом, отмечается и некоторая разница в частоте колебаний — на 0,5—1 колебание в секунду.
При травмах головы альфа-ритм отсутствует, но появляются колебания большой частоты и амплитуды и медленные волны. Кроме того, методом ЭЭГ можно диагностировать ранние признаки неврозов (переутомлений, перетренированости) у спортсменов.
Реоэнцефалография (РЭГ) — метод исследования церебрального кровотока, основанный на регистрации ритмических изменений электрического сопротивления мозговой ткани вследствие пульсовых колебаний кровенаполнения сосудов. Реоэнцефалограмма состоит из повторяющихся волн и зубцов. При ее оценке учитывают характеристику зубцов, амплитуду реографической (систолической) волн и др. О состоянии сосудистого тонуса можно судить также по крутизне восходящей фазы. Патологическими показателями являются углубление инцизуры и увеличение дикротического зубца со сдвигом их вниз по нисходящей части кривой, что характеризует понижение тонуса стенки сосуда.
Метод РЭГ используется при диагностике хронических нарушений мозгового кровообращения, вегетососудистой дистонии, головных болях и других изменениях сосудов головного мозга, а также при диагностике патологических процессов, возникающих в результате травм, сотрясений головного мозга и заболеваний, вторично влияющих на кровообращение в церебральных сосудах (шейный остеохондроз, аневризмы и др.).
Электромиография (ЭМГ) — метод исследования функционирования скелетных мышц посредством регистрации их электрической активности — биотоков, биопотенциалов. Для записи ЭМГ используют электромиографы. Отведение мышечных биопотенциалов осуществляется с помощью поверхностных (накладных) или игольчатых (вкалываемых) электродов. При исследовании мышц конечностей чаще всего записывают электро-миограммы с одноименных мышц обеих сторон. Сначала регистрируют ЭМ покоя при максимально расслабленном состоянии всей мышцы, а затем — при ее тоническом напряжении. По ЭМГ можно на ранних этапах определить (и предупредить возникновение травм мышц и сухожилий изменения биопотенциалов мышц, судить о функциональной способности нервно-мышечного аппарата, особенно мышц, наиболее загруженных в тренировке. По ЭМГ, в сочетании с биохимическими исследованиями (определение гистамина, мочевины в крови), можно определить ранние признаки неврозов (переутомление, перетренированность). Кроме того, множественной миографией определяют работ/ мышц в двигательном цикле (например, у гребцов, боксеров во время тестирования). ЭМГ характеризует деятельность мышц, состояние периферического и центрального двигательного нейрона. Анализ ЭМГ дается по амплитуде, форме, ритму, частоте колебаний потенциалов и других параметрах. Кроме того, при анализе ЭМГ определяют латентный период между подачей сигнала к сокращению мышц и появлением первых осцилляции на ЭМГ и латентный период исчезновения осцилляции после команды прекратить сокращения.
Хронаксиметрия — метод исследования возбудимости нервов в зависимости от времени действия раздражителя. Сначала определяется реобаза — сила тока, вызывающая пороговое сокращение, а затем — хронаксия.
Хронансия — это минимальное время прохождения тока силой в две реобазы, которое дает минимальное сокращение. Хронаксия исчисляется в сигмах (тысячных долях секунды). В норме хронаксия различных мышц составляет 0,0001—0,001 с. Установлено, что проксимальные мышцы имеют меньшую хронаксию, чем дистальные. Мышца и иннервирующий ее нерв имеют одинаковую хронаксию (изохронизм). Мышцы — синергисты имеют также одинаковую хронаксию. На верхних конечностях хронаксия мышц-сгибателей в два раза меньше хронаксии разгибателей, на нижних конечностях отмечается обратное соотношение. У спортсменов резко снижается хронаксия мышц и может увеличиваться разница хронаксии (анизохронаксия) сгибателей и разгибателей при перетренировке (переутомлении), миозитах, паратенонитах икроножной мышцы и др. Устойчивость в статическом положении можно изучать с помощью стабилографии, треморографии, пробы Ромберга и др.
ВОПРОС№28
Функциональная классификация периферических нервных волокон
1. Чувствительные (афферентные, или сенсорные) нервные волокна
2. Двигательные (эфферентные, или моторные) нервные волокна.
Классификация периферических нервных волокон (Эрлангер Д., Гассер Г., 1937) )
Критерии классификации
1.диаметр волокна
2. возбудимость волокна
3. временные характеристики ПД волокна
4. скорость проведения возбуждения
Классификация волокон Эрлангера и . Гассера
• Волокна группы А – альфа, бета, гамма ( V=70-120, 40-70 и 15-40 м/с),
•Волокна группы В (V=73-14 м/с)
•Волокна группы С (0,5-2,0. м/с)
Волокна группы А альфа
(диаметр -13-22 мкм, скорость – 60- 120 м/с, длительность ПД- 0,4-0,5 мс)
1). эфферентные волокна, проводящие
возбуждение к скелетным мышцам от альфа-мотонейронов
2) афферентные волокна, проводящие возбуждение от мышечных рецепторов в ЦНС
Волокна группы А бета
(диаметр – 8-13- мкм, скорость – 40- 70 м/с, длительность ПД- 0,4 -0,6 мс)
1. Афферентные волокна, проводящие
возбуждение от рецепторов прикосновения и сухожильных рецепторов в ЦНС
Волокна группы А гамма
(диаметр – 4-8 мкм, скорость – 15- 40 м/с, длительность ПД- 0,5 -0,7 мс)
1) эфферентные волокна к мышечным веретенам от гамма-мотонейрнов
2). афферентные волокна, проводящие
возбуждение от рецепторов прикосновения и давления в ЦНС
Волокна группы В
(диаметр – 1-3 мкм, скорость -3-14 м/с, длительность ПД- 1,2 мс)
Это – преганглионарные волокна вегетативной нервной системы
Волокна группы С
(диаметр – 0,5—1,0 мкм, скорость -0,5-2,0 м/с, длительность ПД- 2,0 мс)
1.постганглионарные волокна ВНС
2.афферентные волокна, проводящие возбуждение от рецепторов боли, давления и тепла в ЦНС
Безмиелиновые нервные волокна - один слой швановских клеток, между ними - щелевидные пространства. Клеточная мембрана на всем протяжении контактирует с окружающей средой. При нанесении раздражения возбуждение возникает в месте действия раздражителя. Безмиелиновые нервные волокна обладают электрогенными свойствами (способностью генерировать нервные импульсы) на всем протяжении.
Миелиновые нервные волокна - покрыты слоями шванновских клеток, которые местами образуют перехваты Ранвье (участки без миелина) через каждые 1 мм. Продолжительность перехвата Ранвье 1 мкм. Миелиновая оболочка выполняет трофическую и изолирующую функции (высокое сопротивление). Участки, покрытые миелином не обладают электрогенными свойствами. Ими обладают перехваты Ранвье. Возбуждение возникает в ближайшем к месту действия раздражителя перехвата Ранвье. В перехватах Ранвье высокая плотность Nа-каналов, поэтому в каждом перехвате Ранвье происходит усиление нервных импульсов.
Перехваты Ранвье выполняют функцию ретрансляторов (генерируют и усиливают нервные импульсы).
ВОПРОС№29
Механизмы проведения возбуждения
Проведение возбуждения вдоль нервных и мышечных волокон осуществляется при помощи так называемых местных токов, возникающих между возбужденным (деполяризованным) и покоящимися (нормально поляризованными) участками волокна. Распространение местных токов по длине волокна определяется его кабельными свойствами. Направление местного тока, показанного на 23 таково, что он деполяризует соседний с активным (А) покоящийся (В) участок мембраны. Деполяризация эта быстро достигает критического уровня и порождает потенциал действия, который в свою очередь активирует соседний покоящийся участок. Благодаря такому эстафетному механизму возбуждение распространяется вдоль всего волокна. В мышечных и безмякотных нервных волокнах возбуждение осуществляется непрерывно «от точки к точке». Особенности проведения возбуждения по миелинизированным волокнам рассмотрены далее.
ВОПРОС№30
Простейшим нервным центром является нервная цепь, состоящая из трех последовательно соединенных нейронов. Нейроны сложных нервных центров имеют многочисленные связи между собой, образуя нервные сети трех типов:
1. Иерархические. Если возбуждение распространяется на все большее количество нейронов, то такое явление называется дивергенцией. Если же наоборот, от нескольких нейронов пути идут к меньшему количеству, такой механизм называется конвергенцией (рис). Например, к одному мотонейрону могут подходить нервные окончания от нескольких афферентных нейронов. В таких сетях вышележащие нейроны управляют нижележащими.
2. Локальные сети. Содержат нейроны с короткими аксонами. Они обеспечивают связь нейронов одного уровня ЦНС и кратковременное сохранение информации на этом уровне. Примером их является кольцевая цепь. По таким цепям возбуждение циркулирует определенное время. Такая циркуляция называется реверберацией возбуждения (мех. кратковременной памяти).
3. Дивергентные сети с одним входом. В них один нейрон, т.е. вход образует большое количество связей с нейронами многих центров.
В связи с наличием многочисленных связей между нейронами сети в них может возникать иррадиация возбуждения. Это его распространение на все нейроны. В результате иррадиации возбуждение может переходить на другие нервные центры и даже охватывать всю нервную систему.
В нервных сетях большое количество вставочных нейронов, ряд из которых является тормозными. Поэтому в них может возникать несколько типов тормозных процессов:
1. Реципрокное торможение. В этом случае, сигналы идущие от афферентных нейронов, возбуждают одни нейроны, но одновременно, через вставочные тормозные нейроны, тормозят другие. Такое торможение называется также сопряженным (рис) .
2. Возвратное торможение. При этом, возбуждение идет от нейрона по аксону к другой клетке. Но одновременно по коллатералям (ветвям) к тормозному нейрону, который образует синапс на теле этого же нейрона. Частный случай такого торможения – торможение Реншоу. При возбуждении мотонейронов спинного мозга, нервные импульсы по их аксонам идут к мышечным волокнам, но одновременно они распространяются по коллатералям этого аксона к клеткам Реншоу. Аксоны клеток Реншоу образуют тормозные синапсы на телах этих же мотонейронов. В результате, чем сильнее возбуждается мотонейрон, тем более сильное тормозящее влияние на него оказывает тормозной нейрон Реншоу (рис). Такая связь в ЦНС называется обратной отрицательной.
3. Латеральное торможение. Это процесс, при котором возбуждение одной нейронной цепи приводит к торможению параллельной с такими же функциями. Осуществляется через вставочные нейроны.
ВОПРОС№31
Свойства нервных центров
Рефлекторная деятельность организма во многом определяется общими свойствами нервных центров.
Нервный центр — совокупность структур центральной нервной системы, координированная деятельность которых обеспечивает регуляцию отдельных функций организма или определенный рефлекторный акт. Представление о структурно-функциональной основе нервного центра обусловлено историей развития учения о локализации функций в центральной нервной системе. На смену старым теориям об узкой локализации, или эквипотенциальности, высших отделов головного мозга, в частности коры большого мозга, пришло современное представление о динамической локализации функций, основанное на признании существования четко локализованных ядерных структур нервных центров и менее определенных рассеянных элементов анализаторных систем мозга. При этом с цефализацией нервной системы растут удельный вес и значимость рассеянных элементов нервного центра, внося существенные различия в анатомических и физиологических границах нервного центра. В результате функциональный нервный центр может быть локализован в разных анатомических структурах. Например, дыхательный центр представлен нервными клетками, расположенными в спинном, продолговатом, промежуточном мозге, в коре большого мозга.
Нервные центры имеют ряд общих свойств, что во многом определяется структурой и функцией синаптических образований.
1. Односторонность проведения возбуждения. В рефлекторной дуге, включающей нервные центры,
процесс возбуждения распространяется в одном направлении (от входа, афферентных путей к выходу, эфферентным путям).
2. Иррадиация возбуждения. Особенности структурной организации центральных нейронов, огромное
число межнейронных соединений в нервных центрах существенно модифицируют (изменяют) направление распространения процесса возбуждения в зависимости от силы раздражителя и функционального состояния центральных нейронов. Значительное увеличение силы раздражителя приводит к расширению области вовлекаемых в процесс возбуждения центральных нейронов — иррадиации возбуждения.
3. Суммация возбуждения. В работе нервных центров значительное место занимают процессы пространственной и временной суммации возбуждения, основным нервным субстратом которой является постсинаптическая мембрана. Процесс пространственной суммации афферентных потоков возбуждения облегчается наличием на мембране нервной клетки сотен и тысяч синаптических контактов. Процессы временной суммации обусловлены суммацией ВПСП на постсинаптической мембране.
4. Наличие синаптической задержки. Время рефлекторной реакции зависит в основном от двух факторов: скорости движения возбуждения по нервным проводникам и времени распространения возбуждения с одной клетки на другую через синапс. При относительно высокой скорости распространения импульса по нервному проводнику основное время рефлекса приходится на синаптическую передачу возбуждения (синаптическая задержка). В нервных клетках высших животных и человека одна синаптическая задержка примерно равна 1 мс. Если учесть, что в реальных рефлекторных дугах
имеются десятки последовательных синаптических контактов, становится понятной длительность большинства рефлекторных реакций — десятки миллисекунд.
Высокая утомляемость. Длительное повторное раздражение рецептивного поля рефлекса приводит к ослаблению рефлекторной реакции вплоть до полного исчезновения, что называется утомлением. Этот процесс связан с деятельностью синапсов — в последних наступает истощение запасов медиатора, уменьшаются энергетические ресурсы, происходит адаптация постсинаптического рецептора к медиатору.
6. Тонус. Тонус, или наличие определенной фоновой активности нервного центра, определяется тем, что в покое в отсутствие специальных внешних раздражений определенное количество нервных клеток находится в состоянии постоянного возбуждения, генерирует фоновые импульсные потоки. Даже во сне в высших отделах мозга остается некоторое количество фоновоактивных нервных клеток, формирующих «сторожевые пункты» и определяющих некоторый тонус соответствующего нервного центра.
7. Пластичность. Функциональная возможность нервного центра существенно модифицировать картину осуществляемых рефлекторных реакций. Поэтому пластичность нервных центров тесно связана с изменением эффективности или направленности связей между нейронами.
8. Конвергенция. Нервные центры высших отделов мозга являются мощными коллекторами, собирающими разнородную афферентную информацию. Количественное соотношение периферических рецепторных и промежуточных центральных нейронов (10:1) предполагает значительную конвергенцию («сходимость») разномодальных сенсорных посылок на одни и те же центральные нейроны. На это указывают прямые исследования центральных нейронов: в нервном центре имеется значительное количество поливалентных, полисенсорных нервных клеток, реагирующих на разномодальные стимулы (свет, звук, механические раздражения и т. д.). Конвергенция на клетках нервного центра разных афферентных входов предопределяет важные интегративные, перерабатывающие информацию функции центральных нейронов, т. е. высокий уровень интеграционных функций. Конвергенция нервных сигналов на уровне эфферентного звена рефлекторной дуги определяет физиологический механизм принципа «общего конечного пути» по Ч. Шеррингтону.
9. Интеграция в нервных центрах. Важные интегративные функции клеток нервных центров ассоциируются с интегративными процессами на системном уровне в плане образования функциональных объединений отдельных нервных центров в целях осуществления сложных координированных приспособительных целостных реакций организма (сложные адаптивные поведенческие акты).
10. Свойство доминанты. Доминантным называется временно господствующий в нервных центрах очаг (или доминантный центр) повышенной возбудимости в центральной нервной системе. По А.А.Ухтомскому, доминантный нервный очаг характеризуется такими свойствами, как повышенная возбудимость, стойкость и инертность возбуждения, способность к суммированию возбуждения.
В доминантном очаге устанавливается определенный уровень стационарного возбуждения, способствующий суммированию ранее подпороговых возбуждений и переводу на оптимальный для данныхусловий ритм работы, когда этот очаг становится наиболее чувствительным. Доминирующее значение такого очага (нервного центра) определяет его угнетающее влияние на другие соседние очаги возбуждения. Доминантный очаг возбуждения «притягивает» к себе возбуждение других возбужденных зон (нервных центров). Принцип доминанты определяет формирование главенствующего (активирующего) возбужденного нервного центра в тесном соответствии с ведущими мотивами, потребностями организма в конкретный момент времени.
11. Цефализация нервной системы. Основная тенденция в эволюционном развитии нервной системы проявляется в перемещении, сосредоточении функции регуляции и координации деятельности организма в головных отделах ЦНС. Этот процесс называется цефализацией управляющей функции нервной системы. При всей сложности складывающихся отношений между старыми, древними и эволюционно новыми нервными образованиями стволовой части мозга общая схема взаимных влияний может быть представлена следующим образом: восходящие влияния (от нижележащих «старых» нервных структур к вышележащим «новым» образованиям) преимущественно носят возбуждающий стимулирующий характер, нисходящие (от вышележащих «новых» нервных образований к нижележащим «старым» нервным структурам) носят угнетающий тормозной характер. Эта схема согласуется с представлением о росте в процессе эволюции роли и значения тормозных процессов в осуществлении сложных интегративных рефлекторных реакций.
ВОПРОС№32
Серое вещество образовано телами нервных клеток, которых в спинном мозге насчитывают около 13 млн, началом их отростков, клетками глии. Клетки, имеющие одинаковое строение и выполняющие одинаковые функции, образуют ядра серого вещества.
В сером веществе каждой из боковых частей спинного мозга различают три выступа ( рис. 7 ). На протяжении всего спинного мозга эти выступы образуют серые столбы. Выделяют передний, задний и боковой столбы серого вещества. Каждый из них на поперечном разрезе спинного мозга получает название соответственно переднего рога серого вещества спинного мозга , заднего рога серого вещества спинного мозга и бокового рога серого вещества спинного мозга ( рис. 7 ).
Передние рога серого вещества спинного мозга содержат крупные двигательные нейроны . Аксоны этих нейронов, выходя из спинного мозга, составляют передние (двигательные) корешки спинномозговых нервов . Тела двигательных нейронов образуют ядра эфферентных соматических нервов, иннервирующих скелетную мускулатуру (аутохтонная мускулатура спины, мышцы туловища и конечностей). При этом чем дистальнее расположены иннервируемые мышцы, тем латеральнее лежат иннервирующие их клетки.
Задние рога спинного мозга образованы относительно мелкими вставочными (переключательными, кондукторными) нейронами , которые воспринимают сигналы от чувствительных клеток, лежащих в спинномозговых ганглиях . Клетки задних рогов (вставочные нейроны) образуют отдельные группы, так называемые соматические чувствительные столбы.
Таким образом, дорсальная часть серого вещества представляет собой чувствительные центры, которые тянутся вдоль спинного мозга. Они граничат с моторными центрами, которые расположены в вентральной части серого вещества и также тянутся вдоль всего спинного мозга. Те и другие центры неоднородны по структуре, там лежат клетки разного типа ( рис. 8 ).
Дорсальная чувствительная часть спинного мозга состоит из двух частей. Самая дорсальная часть - соматические чувствительные нейроны , воспринимающие сигналы от чувствительных клеток, лежащих в спинномозговых ганглиях . Ниже, ближе к середине, лежат висцеральные чувствительные нейроны , образующие висцеральные чувствительные центры.
Висцеральные чувствительные центры граничат с висцеральными моторными нейронами , которые лежат в нижней ( вентральной ) половине спинного мозга и образуют висцеральные моторные центры. Они переходят в соматические моторные центры, где лежат гигантские двигательные клетки, аксоны которых несут информацию, например в скелетную мускулатуру.
От нижнего шейного до верхних поясничных сегментов спинного мозга серое вещество с каждой стороны образует выпячивание - боковой столб, который на поперечном разрезе представлен боковым рогом серого вещества спинного мозга. В боковых рогах находятся висцеральные моторные и чувствительные центры. Аксоны этих клеток проходят через передний рог спинного мозга и выходят из спинного мозга в составе передних корешков.
В шейном отделе спинного мозга между передним и задним рогами спинного мозга и в верхнегрудном отделе между боковым и задним рогами в белом веществе , примыкающем к серому , расположена ретикулярная формация . Ретикулярная формация состоит из нервных клеток с большим количеством отростков и имеет вид тонких перекладин серого вещества , пересекающихся в различных направлениях.
В сером веществе спинного мозга (преимущественно в задних рогах спинного мозга ) разбросаны так называемые пучковые клетки . Аксоны этих клеток располагаются по периферии серого вещества, образуя узкую кайму белого вещества спинного мозга , которая называется собственными пучками спинного мозга . Передние, боковые и задние собственные пучки осуществляют связи между сегментами спинного мозга.
Рефлексы ствола мозга
Благодаря нервным центрам и ядрам черепно-мозговых нервов ствол мозга обеспечивает разнообразные рефлексы. Рефлексы ствола мозга можно разделить на собственные и системные.
Собственные рефлексы возникают при активации сенсорных волокон черепно-мозговых нервов, замыкаются на уровне ствола мозга и проявляются в сокращении различных групп мышц или в вегетативных реакциях. Системные рефлексы также возникают при активации сенсорных волокон черепно-мозговых нервов, но, в отличие от собственных рефлексов, при этом активируются ядра длинных восходящих и нисходящих путей, приводя в конечном итоге к цепи моторных и вегетативных рефлексов ствола мозга, существенно изменяющих функциональное состояние всего организма. К собственным рефлексам ствола мозга относятся жевательные рефлексы, мимические рефлексы, рефлексы языка, рефлекс аккомодации, рефлекс зрачка, слюноотделительный рефлекс.
Системные рефлексы включают в себя такие акты, как чихание, глотание, кашель, назофарингеальный аспираторный рефлекс, окулокардиальный рефлекс Ашнера и др. Эти рефлексы вызывают последовательную активацию мышц языка, гортани, глотки, жевательных и мимических мышц, пиломоторные и секреторные реакции, а также изменение частоты и глубины дыхания, частоты сердечных сокращений, а также артериального давления.
В свою очередь, и собственные, и системные рефлексы подразделяются на соматомоторные и висцеромоторные. Организация соматомоторных рефлексов в стволе мозга более сложная, чем в спинном мозге. Это обусловлено тем, что сенсорные волокна черепно-мозговых нервов млекопитающих и человека снабжены исключительно обильными и разнообразными рецепторами, а эфферентные волокна этих нервов иннервируют множество компактных сложноориентированных групп мышц, которые значительно отличаются в выполняемых ими функциях, но тесно взаимосвязанных во время рефлекторных действий. Основу соматомоторных рефлексов ствола мозга составляет группа простых рефлексов, обладающая определенной степенью жесткости их функциональной конструкции (рефлексы открывания и закрывания рта, рефлексы мимических мышц и т.д.). Общим свойством соматомоторных рефлексов (особенно группы тригеминно-моторных) является их полифункциональность. В результате преобладания отдельных модальностей в балансе сенсорных входов и вовлечения в выполнение рефлекса системы интегративного контроля ствола мозга и супрасегментарных систем головного мозга высокоорганизованный организм может использовать простые соматомоторные рефлексы в различных тесно взаимосвязанных актах, направленных на выполнение сложных поведенческих реакций (добывание пищи, защита, атака, выражение эмоций). Висцеромоторные рефлексы направлены на поддержание постоянства внутренней среды организма. Афферентная часть рефлекторных дуг этих рефлексов – сенсорные волокна черепно-мозговых нервов (зрительный, тройничный, лицевой, вестибулярный, слуховой, блуждающий). Эфферентная часть – аксоны мотонейронов ядер черепно-мозговых нервов либо нейроны спинного мозга и вегетативных ганглиев. Висцеромоторные рефлексы имеют четкие афферентные входы, но, в отличие от соматомоторных, легко возникают в процессе развития различных сложных защитных, приспособительных, пищевых и других рефлекторных реакций. На-пример, слезный рефлекс. Афферентная часть его рефлекторной дуги – сенсорные волокна слезной ветви тройничного нерва, распределенные в роговице. Этот рефлекс может возникнуть при подсыхании роговицы, при чихании, зевании, жевании, кашле, рвоте и даже при ярком освещении. Зрачковые рефлексы являются также полимодольными. Большая группа висцеромоторных рефлексов осуществляется через систему языкоглоточного и блуждающего нервов. Это приводит к мощным модулирующим влияниям на систему кровообращения, дыхания и пищеварения. Рвота – это защитный рефлекс. Он вызывается с механо- и хеморецепторов корня языка, слизистой желудка, а также импульсами из тонкого кишечника, матки, желчного пузыря. Это весьма сложный и координированный рефлекс, развивающийся на фоне повышенной секреции слюны и слизи и последовательных сокращений обширных групп скелетных и гладких мышц. Стволовые структуры имеют большое значение в организации движений, так как они принимают участие в рефлекторном перераспределении тонуса скелетных мышц. Роль отдельных структур ствола мозга в регуляции тонуса мышц неодинакова. С целью изучения роли отдельных ядер в организации тонуса мышц готовят децеребрированное животное. Децеребрированное животное – это животное (обычно кошка), у которого сделан поперечный разрез ствола на уровне палатки мозжечка. Такой разрез приводит к отделению красных ядер среднего мозга от вестибулярных ядер продолговатого мозга и спинного мозга и создает децеребрационную ригидность. Децеребрационная ригидность – это состояние, при котором наблюдается повышение тонуса мышц-разгибателей. Оперированная кошка приобретает характерный вид: голова запрокинута назад, хвост изогнут в сторону головы, конечности вытянуты. Этот опыт показывает функциональную роль красного и вестибулярных ядер в регуляции тонуса мышц.
Работами А. Магнуса было показано, что ствол мозга обеспечивает статические и статокинетические рефлексы. Статические рефлексы подразделяются на позно-тонические и установочные (выпрямительные). Статические рефлексы обеспечивают поддержание позы и равновесие тела при самых различных положениях, которые относятся к спокойному лежанию, стоянию и сидению. Позно-тонические рефлексы подразделяются на шейно-тонические, вестибуло-тонические (лабиринтные тонические), рефлексы, обеспечивающие компенсаторную установку глаз. Шейно-тонические рефлексы возникают при раздражении проприорецепторов мышц шеи при изменении головы в пространстве, осуществляются с помощью вестибулярных ядер продолговатого мозга (ядро Дейтерса) и проявляются в изменении тонуса мышц-сгибателей и разгибателей на сторонах туловища и конечностей. Например, при запрокидывании головы вверх кошка садится: происходит повышение тонуса мышц-сгибателей задних конечностей и повышение тонуса мышц-разгибателей на передних. При опускании головы вниз (кошка пьет из блюдца) повышается тонус мышц-разгибателей задних конечностей.
Вестибуло-тонические рефлексы также возникают при изменении головы в пространстве, но начинаются они при раздражении вестибулярных рецепторов. Проявляются в том же виде, что и шейно-тонические.
В чистом виде шейно-тонические рефлексы проявляются при выключении вестибулярных рецепторов, а вестибуло-тонические – при выключении проприорецепторов мышц шеи. Компенсаторная установка глазных яблок проявляется у животных при позе лежа на одном боку. Например, кролик лежит на левом боку, правый глаз вверху; наблюдается его вращение вниз, а левого, который внизу, – вверх. Статические позно-тонические рефлексы можно воспроизвести у децеребрированного животного. Рефлекторные дуги этих рефлексов замыкаются на вестибулярных ядрах продолговатого мозга. Выпрямительные рефлексы обеспечивают возврат положения тела в нормальное – голова теменем вверх. Выделяют лабиринтные выпрямительные и шейные выпрямительные рефлексы. Для этих рефлексов необходимы красное ядро среднего мозга и вестибулярные ядра продолговатого мозга. Данные рефлексы возможны только у мезэнцефалического животного. Кроме того, мезэнцефалическое животное (с сохраненным средним мозгом) способно осуществлять ряд рефлексов, включающих определенные движения и возникающих также в результате движений, – статокинетические рефлексы. Многие из таких рефлексов обусловлены сигналами от вестибулярного аппарата: рефлексы повороты головы и глаз. Например, животное вращаем по часовой стрелке, голова животного вращается против часовой стрелки. К этой группе рефлексов относятся «лифтные рефлексы»: происходит увеличение тонуса мышц-разгибателей при линейном ускорении кверху и повышение тонуса сгибателей при ускорении книзу. К статокинетическим рефлексам относятся рефлекторные изменения тонуса мышц при сохранении равновесия тела при прыжках и беге, а также сложные рефлексы, благодаря которым кошка всегда падает на лапы.
ВОПРОС№33
Нервные волокна в белом веществе располагаются пучками. Ближе к серому веществу находятся короткие пучки волокон (осуществляющие связь между частями спинного мозга), остальные пучки состоят из длинных волокон. Пучки нервных волокон образуют проводящие пути спинного мозга. Различают восходящие и нисходящие проводящие пути. Восходящие пути находятся в задней половине белого вещества спинного мозга. Возбуждение от рецепто-
ров мышц тела, кожи и внутренних органов поступает в спинной мозг через спинномозговые нервы. По восходящим путям оно передается в головной мозг.
Нисходящие пути расположены в передней половине белого вещества спинного мозга. Нервные импульсы, посылаемые головным мозгом, по нисходящим путям достигают двигательных центров спинного мозга, а оттуда передаются к органам по центробежным волокнам спин-номозговых нервов.
Основная роль проводящих путей — установление двусторонней связи между спинным мозгом и отделами головного мозга.
Это имеет огромное значение для организма: двусто-ронняя связь обеспечивает согласованное участие всех органов в рефлекторных реакциях.
Функции спинного мозга
Спинной мозг выполняет две функции: проводниковую и рефлекторную. Через спинной мозг проводится возбуждение от органов к головному мозгу и от него к органам. Некоторые волокна проходят из одной половины спинного мозга в другую, связывая их друг с другом. Проведение возбуждения является одной из функций спинного мозга.
К спинному мозгу подходит большинство центростремительных нервов. От него начинаются центробежные нервы. Войдя через задние (чувствительные) корешки, центростремительные волокна соединяются со вставочными нейронами. С них возбуждение передается на центробежные волокна, выходящие через передние (двигательные) корешки спинного мозга. Другими словами, через спинной мозг проходят рефлекторные дуги безусловных рефлексов.
ВОПРОС№34
Продолговатый мозг, так же как и спинной, выполняет две функции - рефлекторную и проводниковую. Из продолговатого мозга и моста выходят восемь пар черепных нервов (с V по XII) и он, так же как и спинной мозг, имеет прямую чувствительную и двигательную связь с периферией. По чувствительным волокнам он получает импульсы - информацию от рецепторов кожи головы, слизистых оболочек глаз, носа, рта (включая вкусовые рецепторы), от органа слуха, вестибулярного аппарата (органа равновесия), от рецепторов гортани, трахеи, легких, а также от интерорецепторов сердечно-сосудистой системы и системы пищеварения.
Через продолговатый мозг осуществляются многие простые и сложнейшие рефлексы, охватывающие не отдельные метамеры тела, а системы органов, например системы пищеварения, дыхания, кровообращения. Рефлекторную деятельность продолговатого мозга можно наблюдать на бульбарной кошке, т. е. кошке, у которой произведена перерезка ствола мозга выше продолговатого. Рефлекторная деятельность такой кошки сложна и многообразна.
Через продолговатый мозг осуществляются следующие рефлексы:
Защитные рефлексы: кашель, чиханье, мигание, слезоотделение, рвота.
Пищевые рефлексы: сосание, глотание, сокоотдение (секреция) пищеварительных желез.
Сердечно-сосудистые рефлексы, регулирующие деятельность сердца и кровеносных сосудов.
В продолговатом мозге находится автоматически работающий дыхательный центр, обеспечивающий вентиляцию легких.
В продолговатом мозге расположены вестибулярные ядра.
От вестибулярных ядер продолговатого мозга начинается нисходящий вестибулоспинальный тракт, участвующий в осуществлении установочных рефлексов позы, а именно в перераспределении тонуса мышц. Бульбарная кошка ни стоять, ни ходить не может, но продолговатый мозг и шейные сегменты спинного обеспечирают те сложные рефлексы, которые являются элементами стояния и ходьбы. Все рефлексы, связанные с функцией стояния, называются установочными рефлексами. Благодаря им животное вопреки силам земного притяжения удерживает позу своего тела, как правило, теменем кверху.
Особое значение этого отдела центральной нервной системы определяется тем, что в продолговатом мозге находятся жизненно важные центры - дыхательный, сердечно-сосудистый, поэтому не только удаление, а даже повреждение продолговатого мозга заканчивается смертью.
Помимо рефлекторной, продолговатый мозг выполняет проводниковую функцию. Через продолговатый мозг проходят проводящие пути, соединяющие двусторонней связью кору, промежуточный, средний мозг, мозжечок и спинной мозг.
ВОПРОС№35
Через средний мозг, являющийся продолжением ствола мозга, проходят восходящие пути от спинного и продолговатого мозга к таламусу, коре больших полушарий и мозжечку.
В состав среднего мозга входят четверохолмия, черная субстанция и красные ядра. Срединную его часть занимает ретикулярная формация (см. § 6 этой главы), нейроны которой оказывают мощное активирующее влияние на всю кору больших полушарий, а также на спинной мозг.
Передние бугры четверохолмия представляют собой первичные зрительные центры, а задние бугры—первичные слуховые центры. Ими осуществляют также ряд реакций, являющихся компонентами ориентировочного рефлекса при появлении неожиданных раздражителей. В ответ на внезапное раздражение происходит поворот головы и глаз в сторону раздражителя, а у животных—настораживания ушей. Этот рефлекс (по И. П. Павлову, рефлекс «Что такое?») необходим для подготовки организма к своевременной реакции на любое новое воздействие. Он сопровождается усилением тонуса мыщц-сгибателей (подготовка к двигательной реакции) и изменениями вегетативных функций (дыхание, сердцебиения).
Средний мозг играет важную роль в регуляции движений глаз. Управление глазодвигательным аппаратом осуществляют расположенные в среднем мозгу ядра блокового (IV) нерва, иннервирующего верхнюю косую мышцу глаза, и глазодвигательного (III) нерва иннервирующего верхнюю, нижнюю и внутреннюю прямые мышцы нижнюю косую мышцу и мышцу, поднимающую веко, а также расположенное в заднем мозгу ядро отводящего (VI) нерва, иннервирующего наружную прямую мышцу глаза. С участием этих ядер осуществляются поворот глаза в любом направлении, аккомодация глаза, фиксация взгляда на близких предметах путем сведения зрительных осей, зрачковый рефлекс (расширение зрачков в темноте и сужение их на свету).
У человека при ориентации во внешней среде ведущим является зрительный анализатор, поэтому особое развитие получили передние бугры четверохолмия (зрительные подкорковые центры). У животных с преобладанием слуховой ориентации (собака, летучая мышь), наоборот, в большей степени развиты задние бугры (слуховые подкорковые центры).
Черная субстанция среднего мозга имеет отношение к рефлексам жевания и глотания, участвует в регуляции тонуса мышц (особенно при выполнении мелких движений пальцами рук).
В среднем мозгу важные функции осуществляет красное ядро. О возрастании роли этого ядра в процессе эволюции свидетельствует резкое увеличение его размеров по отношению к остальному объему среднего мозга. Красное ядро тесно связано с корой больших полушарий, ретикулярной формацией ствола, мозжечком и спинным мозгом.
От красного ядра начинается руброспинальный путь к мотонейронам спинного мозга. С его помощью осуществляется регуляция тонуса скелетных мышц, происходит усиление тонуса мышц-сгибателей. Это имеет большое значение как при поддержании позы в состоянии покоя, так и при осуществлении движений. Импульсы, приходящие в средний мозг от рецепторов сетчатки глаза и от проприорецепторов глазодвигательного аппарата, участвуют в осуществлении глазодвигательных реакций, необходимых для ориентации в пространстве, выполнении точностных движений.
ВОПРОС№36
Промежуточный мозг в процессе эмбриогенеза развивается из переднего мозгового пузыря и образует стенки третьего мозгового желудочка. Топографически и функционально промежуточный мозг подразделяется на эпиталамус, таламус и гипоталамус.
Эпиталамус, или надталамическая область, состоит из расположенного под мозолистым телом свода и из железы внутренней секреции эпифиза, которые формируют верхнюю стенку третьего желудочка. Таламус, или зрительный бугор, представляет собой состоящее из скопления серого вещества объемистое тело яйцевидной формы. Нижней и латеральной поверхностью таламус сращен с соседними частями мозга. Медиальная поверхность зрительного бугра образует боковую стенку полости третьего желудочка. Таламус является крупным подкорковым образованием, через которое в кору больших полушарий проходят разнообразные афферентные пути.
Дно третьего желудочка формирует группа структур, которые объединяют под названием гипоталамуса или подбугорья. Гипоталамус содержит большое количество ядер и является центром регуляции висцеральных функций организма (см. разд. 3.7.3).
ВОПРОС№37
Чем сложнее (точнее, осмысленнее, предметнее) двигательная задача, тем более высоким является «уровень построения движения» и тем более высокие уровни нервной системы принимают участие в решении этой задачи и реализации соответствующих движений.
Н.А. Бернштейн выделил и подробно описал пять основных уровней построения движений, обозначив их латинскими буквами А, В, С, D, Е.
Самый древний в филогенетическом отношении — уровень А, который называется уровнем «палеокинетических регуляций», или руброспинальным, по названию анатомических «субстратов», которые отвечают за построение движений на этом уровне: «красное ядро» выступает «высшей» регулирующей инстанцией этого уровня построения движений, к которому имеют отношение и другие подкорковые структуры. Система данных структур обеспечивает поступление и анализ проприоцептивной информации от мышц, удержание определенной позы, некоторые быстрые ритмические вибрационные движения (например, вибрато у скрипачей), а также ряд непроизвольных движений (дрожь от холода, вздрагивание, стучание зубами от страха). Уровень А у человека практически никогда не бывает ведущим уровнем построения движений.
Второй — уровень В — называется также уровнем «синергии и штампов», или таламо-паллидарным уровнем, поскольку его анатомическим субстратом являются «зрительные бугры» и «бледные шары». Он отвечает за так называемые синергии, т.е. высокослаженные движения всего тела, за ритмические и циклические движения типа «ходьбы» у младенцев, «штампы» — например, стереотипные движения типа наклонов, приседаний. Этот уровень обеспечивает анализ информации о расположении отдельных конечностей и мышц безотносительно к конкретным условиям осуществления соответствующих движений. Поэтому он отвечает, например, за бег вообще (скажем, за бег на месте) как переменную работу различных групп мышц. Однако реальный бег совершается по какой-нибудь конкретной поверхности со своими неровностями и препятствиями, и чтобы он стал возможным, необходимо подключение других, более высоких уровней построения движений. Этот уровень отвечает также за автоматизацию различных двигательных навыков, выразительную мимику и эмоционально окрашенные пантомимические движения.
Уровень С, называемый уровнем пространственного поля, или пирамидно-стриальным, поскольку его анатомическим субстратом выступают уже некоторые корковые структуры, образующие так называемые пирамидные и экстрапирамидные системы, обеспечивает ориентацию субъекта в пространстве. Движения, выполняемые на данном уровне, носят отчетливо целевой характер: они ведут откуда-то, куда-то и зачем-то. Соответственно они имеют начало, середину и конец. Таковы, к примеру, плавание, прыжки в длину, высоту, вольные акробатические упражнения, движения рук машинистки или пианиста по клавиатуре, движения наматывания, т.е. такие, где требуется учет «пространственного поля».
Еще более высоким уровнем является уровень D, называемый также теменно-премоторным, поскольку его анатомическим субстратом являются исключительно кортикальные структуры в те-менно-премоторных областях. Он называется также уровнем предметных действий, поскольку обеспечивает взаимодействие с объектами в соответствии с их предметными значениями. Примеры движений на этом уровне: питье из чашки, снятие шляпы, завязывание галстука, изображение домика или человека. Если вспомнить структуру деятельности, по А.Н.Леонтьеву, то речь идет о выполнении именно действий, а не операций, т.е. цель действия, строящегося на этом уровне, может быть достигнута разными способами (за осуществление операций отвечают другие уровни).
Наконец, уровень Е (Н. А. Бернштейн говорил, что этот уровень наименее изучен в физиологии активности, — возможно, это даже не один, а несколько уровней) отвечает за «ведущие в смысловом отношении координации речи и письма», которые объединены уже не предметом, а отвлеченным заданием или замыслом. Таковы, например, речевые и другие движения читающего лекцию преподавателя, танец балерины и т.п. Здесь речь уже идет о передаче научных знаний или замысла художника, что предполагает -исключительно произвольный уровень регуляции разворачивающихся действий. Анатомический субстрат движений данного уровня еще не вполне изучен, хотя Н. А. Бернштейн подчеркивал несомненное участие в произвольной регуляции движений лобных долей коры головного мозга, ссылаясь на работы А. Р.Лурия.
Как правило, в построении действий человека принимают участие структуры всех уровней, хотя иногда более простые движения регулируются лишь низшими уровнями. В принципе одно и то же движение может строиться на различных уровнях, если включается в решение разных задач. Строго говоря, это движение не будет «одним и тем же» (как было показано выше, даже амплитуда движений рук раненых бойцов увеличивается, если больной выполняет более значимую для него работу). Поэтому можно изменить характер протекания движений, изменив его смысл для человека.
Из вышеизложенного явствует, что концепция неклассической физиологии Н.А. Бернштейна помогает подойти к диалектическому решению психофизиологической проблемы. Анатомо-физиологические структуры здесь всего лишь инструменты для реализации задач деятельности субъекта. То, какие именно структуры участвуют в обеспечении построения движений человека, зависит от того, какое место занимает это движение в структуре деятельности субъекта, какой смысл оно имеет для него. Образно говоря, мозг и нервная система в целом — инструмент, с помощью которого человек «проигрывает мелодии своей жизни».
Мы не должны, однако, забывать, что устройство этого инструмента также заслуживает своего изучения в психологии, поскольку ни один из психических процессов, обеспечивающих ориентировку субъекта в мире и регуляцию его деятельности, невозможен без нормально работающего мозга. Естественно, патология мозговой деятельности приводит к ограничениям (иногда весьма существенным) в формировании адекватной деятельности субъекта, подобно тому как поломанный или расстроенный инструмент не позволяет музыканту извлечь достойную музыку (хотя, впрочем, Н.Паганини мог играть и на одной струне). Обратимся поэтому к некоторым аспектам работы головного мозга, изучаемым в психологии при решении разных задач, и в частности в связи с практическими запросами к нейропсихологии, одним из создателей которой был А. Р.Лурия
ВОПРОС№38
Функция большинства желез внутренней секреции регулируется гормонами передней доли гипофиза ( аденогипофиза ). На высвобождение этих гормонов в свою очередь влияют гормоны нейронов гипофизотропной зоны медиальной области гипоталамуса , которые оказывают либо стимулирующее, либо тормозное действие на гипофиз и называются соответственно рилизинг-факторы и ингибирующие факторы . Рилизинг-факторы высвобождаются из нервных отростков в области срединного возвышения и через гипоталамо-гипофизарную систему с кровью поступают к аденогипофизу. Принцип регуляции заключается в том, что при повышении содержания в плазме гормонов периферических эндокринных желез уменьшается выброс соответствующего рилизинг-фактора в кровеносные сосуды медиальной области гипоталамуса. Регуляция по принципу отрицательной обратной связи, в которой участвуют медиальный гипоталамус , гипофиз и периферические эндокринные железы , действует даже в отсутствии влияний со стороны ЦНС . Регуляция сохраняется после полного отделения медиальной области гипоталамуса от остальных отделов ЦНС. Роль ЦНС заключается в приспособлении этой регуляции к внутренним и внешним потребностям организма. Например, при стрессе возрастает секреция кортизола корой надпочечников в результате того, что увеличивается активность нейронов медиальной области гипоталамуса, что ведет к усиленному выделению рилизинг-фактора в срединном возвышении.
Гипоталамус оказывает регулирующее воздействие на многочисленные вегетативные функции организма. Это влияние происходит через нейрогипофиз и аденогипофиз .
Гипоталамические гормоны выделяются в кровь непосредственно через нейрогипофиз .
Нейросекрет ядер гипоталамуса через воротную систему действует на железистые клетки аденогипофиза , усиливая или тормозя секрецию ряда гормонов. Аденогипофизарные гормоны в свою очередь регулируют деятельность других желез внутренней секреции .
Гипоталамус и гипофиз объединяют в особую нейрогормональную гипоталамо-гипофизарную систему ( рис. 42 , рис. 43 ).
Центральная регуляция гипоталамо-гипофизарной эндокринной системы осуществляется преимущественно центрами преоптической области , лимбической системы и среднего мозга . Влияние этих центров переключается через латеральную область гипоталамуса . Полагают, что сигналы от этих центров передаются нейронами, медиаторами которых служат норадреналин , дофамин или сератонин . Возможно, к этим центрам также поступает информация о содержании эндокринных гормонов в плазме крови по принципу обратной связи. Нейроны, входящие в состав регуляторных систем, способны специфически реагировать на гормоны эндокринных желез и накапливать их.
В тесном взаимодействии нервных и эндокринных структур гипоталамуса можно убедиться на примере связей нейронов гипофизотропной зоны . На нейрон, секретирующий какой-либо рилизинг-фактор, могут оказывать влияние афферентные нейроны лимбической системы (миндалины и гипокампа), преоптической области и передней части гипоталамуса . Двигательные отростки этого нейрона идут к самым различным отделам головного мозга . Такие нейроны обладают свойством саморегуляции по принципу возвратного торможения. Во всех двигательных отростках подобных нейронов медиатором, видимо, служит рилизинг-фактор. Таким образом, эти клетки гипофизотропной зоны являются, с одной стороны, конечными интегрирующими клетками , а с другой - эндокринными клетками , образующими гормон.
ВОПРОС№39
Гипоталамус контролирует деятельности эндокринной системы человека благодаря тому, что его нейроны способны выделять нейроэндокринные трансмиттеры (либерины и статины), стимулирующие или угнетающие выработку гормонов гипофизом. Иными словами, гипоталамус, масса которого не превышает 5% мозга, является центром регуляции эндокринных функций, он объединяет нервные и эндокринные регуляторные механизмы в общую нейроэндокринную систему. Гипоталамус образует с гипофизом единый функциональный комплекс, в котором первый играет регулирующую, второй — эффекторную роль.
ВОПРОС№40
12.1. Структурная организация и связи мозжечка.
У млекопитающих мозжечок - крупный вырост варолиева моста, состоящий из двух полушарий и непарного отдела - червя. Со стволовой частью мозга мозжечок соединяется тремя парами ножек. Самые толстые средние ножки как бы охватывают продолговатый мозг и, расширяясь, переходят в варолиев мост. Верхние ножки начинаются в зубчатых ядрах мозжечка (см. ниже) и направляются к четверохолмию среднего мозга. Третья пара ножек (нижняя) спускается вниз, сливаясь с продолговатым мозгом. Афферентные волокна, приходящие в мозжечок, преимущественно входят в состав средних и нижних ножек, тогда как эфферентные собраны главным образом в верхних ножках мозжечка.
Вся поверхность мозжечка разделяется глубокими бороздами на доли. В свою очередь, каждая доля параллельными бороздками разделяется на извилины; группы извилин формируют дольки мозжечка. Каждую дольку обозначают как классическим названием (язычок, центральная, вершина и т. д.), так и латинской нумерацией (1-Х) в соответствии с распространенной номенклатурой (рис. ).
Согласно О. Ларселу, всю эверхность мозжечка можно разделить на отделы в зависимости от характера поступающих афферентных
А - отделы и доли мозжечка, Б - расположение связей в коре мозжечка. I - X - обозначение долей мозжечка по но менклатуре Ларсела, I - передняя доля 2 - задняя доля 3 - парафлокхулярный отдел, 4 - флоккулонодулярная доля 5 - корзинчатая клет ка 6 - клетка Пуркинье 7 - лазающее волокно, 8 - клетка зерно, 9 - клетка внутримозжеч кового ядра, 10 - клетка Гольджи ,11 - мшистое волокно .
путей и филогенетического возраста структурных образований. Наиболее изолированная флоккулонодулярная доля (X) составляет древний мозжечок (архицеребеллум), гомологичный мозжечку круг-лоротых. Здесь заканчиваются проекции от вестибулярных ядер продолговатого мозга. Следующий отдел мозжечка - старый мозжечок, или палеоцеребеллум, - включает в себя участки червя, соответствующие передней доле, пирамиды, язычок и парафлокку-лярный отдел. В палеоцеребеллуме находятся проекции восходящих спинно-мозжечковых трактов, несущих информацию от мышечных рецепторов. И наконец, третий отдел - новый мозжечок, или неоцеребеллум, - состоит из появляющихся у млекопитающих полушарий и участков червя, которые расположены каудальнее первой борозды. К неоцеребеллуму по трактам, переключающимся в ядрах варолиева моста, поступает афферентная импульсация от обширных областей коры больших полушарий (лобных, теменных, височных и затылочных долей).
Полушария и червь мозжечка состоят из лежащего на периферии серого вещества - коры - и расположенного глубже белого вещества, в котором заложены скопления нервных клеток, образующие ядра мозжечка. Кора мозжечка представлена тремя слоями, каждый из которых имеет определенный набор клеточных элементов. Самый поверхностный слой - молекулярный - состоит из параллельных волокон и разветвлений дендритов и аксонов нейронов нижележащих слоев. В нижней части молекулярного слоя расположены тела корзиночных клеток, аксоны которых оплетают тела и начальные сегменты аксонов клеток Пуркинье . Здесь же в молекулярном слое имеется некоторое количество звездчатых клеток.
Вентральнее молекулярного слоя находится ганглиозный слой, в котором сосредоточены тела клеток Пуркинье. Эти крупные клетки ориентированы вертикально по отношению к поверхности коры мозжечка. Их дендриты поднимаются вверх и широко ветвятся в молекулярном слое. Дендриты клеток Пуркинье содержат множество шипиков, на которых образуют синапсы параллельные волокна молекулярного слоя. Аксоны клеток Пуркинье спускаются к ядрам мозжечка. Часть на них заканчивается на вестибулярных ядрах. Практически аксоны клеток Пуркинье представляют собой единственный выход из коры мозжечка.
Под ганглиозным слоем лежит гранулярный слой, который содержит большое число тел клеток-зерен, или гранулярных клеток. По некоторым подсчетам их число может достигать 10 млрд. Аксоны клеток-зерен поднимаются вертикально вверх в молекулярный слой и там Т-образно ветвятся. Ветви идут параллельно поверхности коры и образуют синапсы на дендритах других клеток. Здесь же в гранулярном слое лежат клетки Гольджи, аксоны которых подходят к клеткам-зернам.
Афферентный вход к нейронному аппарату коры осуществляется по трем системам волокон. Это, во-первых, лазающие, или лиано-видные, волокна, идущие из нижних олив продолговатого мозга. Нижняя олива получает афференты от нескольких восходящих трактов спинного мозга и из центров головного мозга. Лазающие волокна широко ветвятся и подобно лианам оплетают дендриты клеток Пуркинье, формируя на них синапсы. Вторая система афферентных волокон - это мшистые, или моховидные, волокна, идущие от ядер моста и оканчивающиеся на клетках-зернах. Мшистые волокна многократно ветвятся и образуют синапсы на множестве клеток коры мозжечка. И наконец, третья система афферентных волокон - это также широко ветвящиеся адренэргические волокна, поступающие в кору мозжечка из голубого пятна в среднем мозгу. Голубое пятно представляет собой скопление из нескольких сотен нейронов, аксоны которых способны диффузно выбрасывать норадреналин в межклеточное пространство. Вероятно, эти нейроны выполняют нейромодуляторную функцию и могут изменять возбудимость нейронов, локализованных в коре мозжечка.
Нейрофизиологические исследования Дж. Экклса показали, что корзинчатые и звездчатые клетки, которые заканчиваются синапсами на клетках Пуркинье, вызывают в них тормозные постсинаптические потенциалы (ТПСП) и подавление импульсной активности. Клетки Гольджи тормозят клетки-зерна по принципу обратной связи .
Таким образом, большинство связей, опосредованных интернейронами коры мозжечка, являются тормозными. Исключение составляют только клетки-зерна, которые возбуждаются от мшистых волокон и сами через Т-образно ветвящиеся аксоны активируют все остальные интернейроны коры мозжечка. Однако конечный эффект этой активации опять-таки сводится к торможению.
Клетки Пуркинье, которые представляют собой выход функциональной системы, могут возбуждаться прямо через лиановидные волокна и опосредованно через моховидные волокна и клетки-зерна. Возникающие под действием этого возбуждения разряды клеток Пуркинье, согласно электрофизиологическим данным, вызывают в конечном итоге торможение нейронов ядер мозжечка. Эти факты свидетельствуют о том, что деятельность всей нейрональной системы коры мозжечка сводится к торможению ядер, над которыми кора надстроена. Очевидно, механизм этого торможения можно представить следующим образом.
В покое клетки Пуркинье обладают фоновой электрической активностью, которая вызывает тоническое торможение нейронов в ядрах мозжечка. Возбуждение клеток Пуркинье через систему ли-ановидных или мшистых волокон приводит к увеличению частоты импульсных разрядов этих нейронов и, как следствие, к усилению торможения ядер мозжечка. Напротив, торможение клеток Пуркинье, вызванное звездчатыми или корзинчатыми клетками, сопровождается растормаживанием нейронов в ядрах мозжечка. Сами же ядра мозжечка, обладающие постоянной тонической активностью, через нисходящие пути регулируют уровень возбудимости центров спинного мозга и мышечный тонус.
Согласно гипотезе, высказанной Дж. Экклсом, большое количество тормозных нейронов в коре мозжечка предотвращает длительную циркуляцию возбуждения по нейронным цепям. Любой возбуждающий импульс, приходя в кору мозжечка, превращается в торможение за время порядка 100 мс. Так происходит как бы автоматическое стирание предшествующей информации, которое позволяет коре мозжечка участвовать в регуляции быстрых движений.
В белом веществе мозжечка сконцентрированы три пары ядер. В белом веществе червя близко к срединной плоскости находится ядро шатра, или фастигиальное ядро. Нейроны этого ядра посылают свои отростки к вестибулярному ядру Дейтерса и к ретикулярной формации продолговатого мозга и варолиева моста, где берет свое начало ретикулоспинальный тракт спинного мозга. Латеральнее фастигиального ядра находится вставочное, или промежуточное, ядро, которое у человека разделяется на шаровидное и пробковидное ядра. От вставочного ядра аксоны идут в средний мозг к красному ядру. Менее развитый афферентный путь от вставочного ядра идет в промежуточный мозг к вентролатеральному ядру зрительного бугра - таламуса - и оттуда к двигательной коре. Латеральнее всех ядер лежит наиболее крупное зубчатое ядро мозжечка, от которого мощные пучки волокон направляются к вентролатеральному ядру таламуса, и далее аксоны нейронов второго порядка проецируются в моторные зоны коры.
К нейронам мозжечковых ядер подходят аксоны клеток Пуркинье. Установлено, что клетки Пуркинье червя устанавливают прямые связи с ядром Дейтерса. Это позволяет иногда относить ядро Дейтерса к внутримозжечковым ядрам по функциональному принципу.
Существует определенная топография связей коры мозжечка с его ядрами. Согласно классификации Бродала, кору мозжечка млекопитающих можно разделить на три продольные зоны: медиальную червячную зону, от которой аксоны клеток Пуркинье проецируются на ядро шатра, промежуточную зону коры, связанную со вставочным ядром, и латеральную зону коры полушарий, дающую проекции к зубчатому ядру. Эта классификация, в основу которой положены эфферентные связи мозжечка, свидетельствует о том, что латеральные отделы мозжечка через зубчатое ядро связаны с более высокими уровнями головного мозга.
В целом мозжечок имеет обширные эфферентные связи со всеми двигательными системами стволовой части мозга: кортикоспинальной, руброспинальной, ретикулоспинальной и вестибулоспинальной. Не менее разнообразными являются и афферентные входы мозжечка.
Афферентная информация в мозжечок от спинного мозга приходит по спинно-мозжечковым трактам (дорсальному и вентральному), ростральному спинно-мозжечковому и кунеоцеребеллярным трактам, по спинооливомозжечковым путям. Кора больших полушарий также посылает афферентные пути в мозжечок, среди которых наиболее важными являются кортикоретикуломозжечковый и це-ребромостомозжечковый тракты.
ВОПРОС№41
Кора большого мозга - филогенетически молодая структура мозга. В процессе эволюции млекопитающих особенно быстро развивалась новая кора, толщина достигла 1-2 мм, а общая ее поверхность у человека составляет около 2200 см2. В состав коры большого мозга входят нейроны, которые в разных ее участках имеют свои особенности. Различают свыше 50 цитоархитектурних полей. Многие из них участвуют в регуляции двигательных функций.
Сенсорные зоны коры большого мозга тесно связаны с моторными зонами, которые лежат перед центральной бороздой, занимая примерно заднюю часть лобной доли. В моторной коре различают: первичную, премоторной и дополнительной моторной области.
Первичная моторная кора находится перед центральной бороздой (поле 4). Как и первая соматосенсорная зона, участок имеет топической организации. Раздражение электрическим током верхней части участка у животных или у людей во время нейрохирургических операций сопровождается сокращением мышц нижней части тела на противоположной стороне. Более 50% поверхности этого участка у человека - это представительство рук и языка, что свидетельствует о развитии этих функций у человека.
Премоторной зона лежит впереди первичной моторной (поле 6) и в глубине сильвиевой борозды. Большинство импульсов из этой зоны вызывает модели движения, включаются группы мышц, которые выполняют определенные функции. Импульсы идут в первичную моторную кору, в базальных ядер, а затем снова в моторную зону через таламус. Эта зона вместе с базальными ядрами, таламусом, первичной моторной корой управляет многими сложными движениями.
Дополнительная моторная участок расположен перед и над премоторной зоной. Чтобы "сократились мышцы, контролируемые этой зоны, нужно применить электрический ток значительно большей мощности. Эффект раздражения часто проявляется с обеих сторон тела. Функция рассматриваемой области состоит в том, что она вместе с премоторной участком создает условия для обеспечения позы и движений, которые реализуются уже первичной моторной корой. Нейроны коры моторной зоны получают многочисленные импульсы волокнами, идущими от сенсомоторной области париетальной коры, зрительной и слуховой участков, моторной коры противоположной стороны, таламуса, а также от базальных ядер и других структур.
Кортико-спинальный (пирамидный) путь начинается от нейронов моторной коры, проходит между хвостатым ядром и скорлупой (внутренняя капсула). В продолговатом мозге большинство волокон (80%) переходит на противоположную сторону - в латеральный пирамидный путь, а часть (20%)-на противоположную сторону ниже (в шейном и грудном отделах спинного мозга), т.е. в вентральный пирамидный путь.
В пирамидному пути содержится около 1 млн волокон. Лишь незначительная часть (около 3%) начинается от гигантских пирамидных клеток Беца. Коллатерали от волокон пирамидного пути идут в соседние участки коры головного мозга и вызывают торможение (таким образом предотвращают иррадиации возбуждения). Большинство волокон латерального пирамидного пути заканчивается на интернейронах спинного мозга, часть - на сенсорных нейронах задних рогов или собственно на мотонейронах.
Роль пирамидного пути в осуществлении двигательной функции заключается в регуляции тонких и точных движений, особенно дистальных частей конечностей, т.е. пальцев. При нарушении кровоснабжения моторной коры (кровоизлияние, тромбоз, травма, опухоль) наблюдается паралич мышц на противоположной стороне тела. Значительное количество волокон от моторной коры не идет непосредственно к спинному мозгу пирамидным путем, а переключается на различных ядрах - базальных, красном, вестибулярных, ядрах ретикулярной формации и др..
Раньше широко пользовались термином «экстрапирамидная система». Теперь его употребляют реже, потому пути, входящих в его состав, имеют различное функциональное назначение. Моторная кора тесно связана с красным ядром. Это кортико-руброспинальный путь. Аксоны от коры заканчиваются синапсами в нижней части красного ядра у больших клеток. В красном ядре тоже являются топические представительство всех мышц тела. Отсюда начинается руброспинальный путь, переходит на противоположную сторону. Его волокна контактируют с интернейронов спинного мозга, а некоторые - прямо с мотонейронами, которые контролируют функцию преимущественно дистальных мышц тела.
Кортико-спинальный и руброспинальный пути называют еще латеральной моторной системой, а вестибулоспинальний и ретикулоспинальному - медиальной моторной системой.
Колончастый организация зон коРй состоит из вертикально расположенных групп нескольких тысяч нейронов, которые посылают импульсы к мышце или мышц-синергистов. Эти группы нейронов называют колонками.
Каждая колонка содержит пирамидные клетки в V слое, имеет вход во II слой через клетки IV слоя., С другими участками коры она связывается через клетки VI слоя. Каждая колонка получает информацию из многих источников. Одна пирамидная клетка не может вызвать возбуждение мышцы, для этого нужно, чтобы в состояние возбуждения пришли 50-100 пирамидных клеток. Различают динамические и статические сигналы этих клеток. Динамические сигнал-импульсы, в генерируемых динамическими нейронами, их частота больше и приводит к сокращению мышцы. Статические сигналы - импульсы статических нейронов, их частота меньше, но действие длительнее. Они лишь пидгримують сокращения мышцы.
Таким образом, а-мотонейроны переднего рога спинного мозга анализируют и синтезируют информацию, поступающую к ним от сенсорных нейронов своего и соседних сегментов, от пирамидного, руброспинальный, вестибулоспинального, ретикулоспинальному и других путей через интернейроны или непосредственно.