
- •«Обработка изображений и распознавание образов» Визильтер Юрий Валентинович Методическое пособие-2010
- •Раздел 2. Распознавание образов. 184
- •Уровни и методы машинного зрения
- •Растровое изображение Изображение как двумерный массив данных
- •Алгебраические операции над изображениями
- •Физическая природа изображений
- •Изображения различных диапазонов длин волн
- •Изображения различной физической природы
- •Тип пикселя
- •Возможности и особенности системы Pisoft
- •Базовые средства просмотра и анализа изображений и видеопоследовательностей
- •Алгебра изображений
- •Геометрические преобразования изображений
- •Устройства оцифровки и ввода изображений
- •Линейки и матрицы, сканеры и камеры
- •Геометрия изображения
- •Цифровые и аналоговые устройства
- •Пространственное разрешение
- •Программное обеспечение
- •Обработка цветных изображений
- •Цветовая модель rgb
- •Цветовая модель hsv
- •Цветовая модель yuv
- •Цветовая сегментация изображения
- •Гистограмма и гистограммная обработка изображений
- •Профиль вдоль линии и анализ профиля
- •Проекция и анализ проекции
- •Бинаризация полутоновых изображений
- •Сегментация многомодальных изображений
- •Выделение и описание областей
- •Выделение связных областей на бинарных изображениях
- •1. Отслеживающие алгоритмы на примере алгоритма обхода контура.
- •2. Сканируюющие алгоритмы.
- •Оконная фильтрация изображений в пространственной области
- •Фильтрация бинарных изображений Модель шума «соль и перец»
- •Структура оконного фильтра
- •Логическая фильтрация помех
- •Бинарная медианная фильтрация
- •Бинарная ранговая фильтрация
- •Взвешенные ранговые фильтры
- •Анизотропная фильтрация
- •Расширение-сжатие (простая морфология)
- •Стирание бахромы
- •Нелинейная фильтрация полутоновых изображений
- •Ранговая оконная фильтрация
- •Минимаксная фильтрация
- •Задача выделения объектов интереса
- •Бинарные фильтры для выделения объектов
- •Метод нормализации фона
- •Скользящее среднее в окне
- •Гауссовская фильтрация
- •Преобразование Фурье. Линейная фильтрация в частотной области
- •Преобразование Фурье
- •Комплексное представление преобразования Фурье
- •Быстрое преобразование Фурье
- •Двумерное преобразование Фурье
- •Свертка с использованием преобразования Фурье
- •Фильтрация изображений в частотной области
- •Вейвлет-анализ
- •Пирамида изображений
- •Вейвлет-преобразование
- •Операторы вычисления производных
- •Операторы вычисления векторов градиентов
- •Операторы Марра и Лапласа
- •Постобработка контурного изображения Локализация края
- •Утончение контура
- •Сегментация полутоновых изображений
- •Пороговая и мультипороговая сегментация
- •Методы слияния, разбиения и слияния/разбиения областей
- •Способы описания выделенных областей
- •Текстурные признаки
- •1.6. Морфологические методы анализа сцен (по ю.П. Пытьеву) Методы обнаружения объектов, заданных эталонами
- •Согласованная фильтрация.
- •Корреляционное обнаружение.
- •Морфологический подход ю.П. Пытьева.
- •Форма изображения как инвариант преобразований изображений, отвечающих вариациям условий регистрации
- •Сравнение изображений по форме
- •Выделение отличий изображений по форме
- •Обнаружение объекта по его изображению и оценка его координат
- •*Морфология на базе кусочно-линейной интерполяции
- •Преобразование Хафа для поиска прямых
- •*Различные способы параметризации прямых
- •Преобразование Хафа для поиска окружностей
- •Анализ аккумулятора при поиске геометрических примитивов
- •Обобщенное преобразование Хафа
- •*Специализированная процедура голосования для поиска эллипсов
- •*Рекуррентное преобразование Хафа в скользящем окне
- •1.8. Математическая морфология (по ж. Серра)
- •Морфологические операции на бинарных изображениях
- •Морфологические операции на полутоновых изображениях
- •Морфологическое выделение «черт» и объектов
- •Морфологический спектр
- •Морфологические скелеты. Непрерывная бинарная морфология Непрерывная бинарная морфология
- •Непрерывное гранично-скелетное представление изображения
- •Обработка и использование скелета
- •*Обобщенные скелетные представления бинарных фигур
- •Алгоритмы утончения дискретного бинарного изображения
- •*Регуляризация скелетов
- •Типы нерегулярностей скелета
- •Устранение нерегулярностей
- •Регуляризация скелета по Тихонову
- •*Селективные морфологии
- •Метод оптических потоков
- •Дифференциальный подход
- •Корреляционный подход
- •Частотный подход
- •Корреляционное слежение.
- •Форматы хранения и передачи цифровых изображений
- •Методы сжатия цифровых изображений
- •Формат bmp
- •Формат pcx
- •Формат gif
- •Формат tiff
- •Формат jpeg
- •Форматы хранения и передачи цифровых видеопоследовательностей
- •Формат avi
- •Формат mpeg
- •Форматы mpeg 1 и mpeg 2
- •Формат mpeg 4
- •Форматы mpeg 7
- •Раздел 2. Распознавание образов.
- •Обучение с учителем. Детерминированные методы, основанные на «близости». Линейные решающие правила. Метод построения эталонов. Метод ближайшего соседа. Метод k ближайших соседей.
- •Линейные решающие правила
- •Метод построения эталонов
- •Методы ближайших соседей
- •Параметрические и непараметрические методы
- •Дискриминантные и моделирующие методы обучения
- •Способность распознавателя к обобщению. Регуляризация.
- •Байесовская теория решений. Случай двух классов. Классификаторы, разделяющие функции и поверхности решений. Вероятности ошибок. Разделяющие функции для случая нормальной плотности.
- •Дискриминантный анализ. Линейный дискриминант Фишера. Персептронная функция критерия. Линейный дискриминантный анализ (lda, дискриминант Фишера)
- •Персептрон Розенблатта
- •Байесовское объединение свидетельств
- •Структурное распознавание
- •Автоматизированное конструирование алгоритмов обнаружения объектов на основе преобразований модельных описаний объектов.
- •Нейросетевое распознавание
- •Нейронные сети ассоциативной памяти. Сети Хопфилда.
- •Многослойные персептроны. Оптимизационное обучение. Метод обратного распространения ошибки.
- •Многослойные персептроны. Правило Хебба.
- •*Связь с байесовским распознаванием
- •Сети встречного распространения. Самоорганизующиеся сети.
Преобразование Фурье. Линейная фильтрация в частотной области
Линейная фильтрация изображений может осуществляться как в пространственной, так и в частотной области. При этом считается, что «низким» пространственным частотам соответствует основное содержание изображения – фон и крупноразмерные объекты, а «высоким» пространственным частотам – мелкоразмерные объекты, мелкие детали крупных форм и шумовая компонента.
Традиционно для перехода в область пространственных частот используются методы, основанные на преобразовании Фурье. В последние годы все большее применение находят также методы, основанные на вейвлет-преобразовании (wavelet-transform).
Преобразование Фурье
Преобразование Фурье позволяет представить практически любую функцию или набор данных в виде комбинации таких тригонометрических функций как синус и косинус, что позволяет выявить периодические компоненты в данных и оценить их вклад в структуру исходных данных или форму функции. Традиционно различаются три основные формы преобразования Фурье: интегральное преобразование Фурье, ряды Фурье и дискретное преобразование Фурье.
Интегральное преобразование Фурье переводит вещественную функцию в пару вещественных функций или одну комплексную функцию в другую.
Вещественную функцию F(x) можно разложить по ортогональной системе тригонометрических функций то есть представить в виде:
,
где A(ω) и В(ω) называются интегральными косинус и синус преобразованиями:
Ряд Фурье представляет периодическую функцию F(x), заданную на интервале [a,b], в виде бесконечного ряда по синусам и косинусам. То есть периодической функции F(x) ставится в соответствие бесконечная последовательность коэффициентов Фурье.
,
где
Дискретное преобразование Фурье переводит конечную последовательность вещественных чисел в конечную последовательность коэффициентов Фурье.
Пусть
последовательность вещественных чисел,
например отсчеты яркости пикселей по
строке изображения. Эту последовательность
можно представить в виде комбинации
конечных сумм вида:
,
где
,
,
Основное отличие между тремя формами преобразования Фурье заключается в том, что если интегральное преобразование Фурье определено по всей области определения функции F(x), то ряд и дискретное преобразование Фурье определены только на дискретном множестве точек, бесконечном для ряда Фурье и конечном для дискретного преобразования.
Как видно из определений преобразования Фурье, наибольший интерес для систем цифровой обработки сигналов представляет дискретное преобразование Фурье. Данные, получаемые с цифровых носителей или источников информации, представляют собой упорядоченные наборы чисел, записанные в виде векторов или матриц.
Обычно принимается, что входные данные для дискретного преобразования представляют собой равномерную выборку с шагом Δ, при этом величина T=NΔ называется длиной записи или основным периодом. Основная частота равна 1/T. Таким образом, в дискретном преобразовании Фурье производится разложение входных данных по частотам, которые являются целым кратным основной частоты. Максимальная частота, определяемая размерностью входных данных, равна 1/2Δ и называется частотой Найквиста. Учет частоты Найквиста имеет важное значение при использовании дискретного преобразования. Если входные данные имеют периодические составляющие с частотами, превышающими частоту Найквиста, то при вычислении дискретного преобразования Фурье произойдет подмена высокочастотных данных более низкой частотой, что может привести к ошибкам при интерпретации результатов дискретного преобразования.
Важным инструментом анализа данных является также энергетический спектр. Мощность сигнала на частоте ω определяется следующим образом:
эту величину часто называют энергией сигнала на частоте ω. Согласно теореме Парсеваля общая энергия входного сигнала равна сумме энергий по всем частотам.
.
График зависимости мощности от частоты называется энергетическим спектром или спектром мощности. Энергетический спектр позволяет выявлять скрытые периодичности входных данных и оценивать вклад определенных частотных компонент в структуру исходных данных.