
- •«Обработка изображений и распознавание образов» Визильтер Юрий Валентинович Методическое пособие-2010
- •Раздел 2. Распознавание образов. 184
- •Уровни и методы машинного зрения
- •Растровое изображение Изображение как двумерный массив данных
- •Алгебраические операции над изображениями
- •Физическая природа изображений
- •Изображения различных диапазонов длин волн
- •Изображения различной физической природы
- •Тип пикселя
- •Возможности и особенности системы Pisoft
- •Базовые средства просмотра и анализа изображений и видеопоследовательностей
- •Алгебра изображений
- •Геометрические преобразования изображений
- •Устройства оцифровки и ввода изображений
- •Линейки и матрицы, сканеры и камеры
- •Геометрия изображения
- •Цифровые и аналоговые устройства
- •Пространственное разрешение
- •Программное обеспечение
- •Обработка цветных изображений
- •Цветовая модель rgb
- •Цветовая модель hsv
- •Цветовая модель yuv
- •Цветовая сегментация изображения
- •Гистограмма и гистограммная обработка изображений
- •Профиль вдоль линии и анализ профиля
- •Проекция и анализ проекции
- •Бинаризация полутоновых изображений
- •Сегментация многомодальных изображений
- •Выделение и описание областей
- •Выделение связных областей на бинарных изображениях
- •1. Отслеживающие алгоритмы на примере алгоритма обхода контура.
- •2. Сканируюющие алгоритмы.
- •Оконная фильтрация изображений в пространственной области
- •Фильтрация бинарных изображений Модель шума «соль и перец»
- •Структура оконного фильтра
- •Логическая фильтрация помех
- •Бинарная медианная фильтрация
- •Бинарная ранговая фильтрация
- •Взвешенные ранговые фильтры
- •Анизотропная фильтрация
- •Расширение-сжатие (простая морфология)
- •Стирание бахромы
- •Нелинейная фильтрация полутоновых изображений
- •Ранговая оконная фильтрация
- •Минимаксная фильтрация
- •Задача выделения объектов интереса
- •Бинарные фильтры для выделения объектов
- •Метод нормализации фона
- •Скользящее среднее в окне
- •Гауссовская фильтрация
- •Преобразование Фурье. Линейная фильтрация в частотной области
- •Преобразование Фурье
- •Комплексное представление преобразования Фурье
- •Быстрое преобразование Фурье
- •Двумерное преобразование Фурье
- •Свертка с использованием преобразования Фурье
- •Фильтрация изображений в частотной области
- •Вейвлет-анализ
- •Пирамида изображений
- •Вейвлет-преобразование
- •Операторы вычисления производных
- •Операторы вычисления векторов градиентов
- •Операторы Марра и Лапласа
- •Постобработка контурного изображения Локализация края
- •Утончение контура
- •Сегментация полутоновых изображений
- •Пороговая и мультипороговая сегментация
- •Методы слияния, разбиения и слияния/разбиения областей
- •Способы описания выделенных областей
- •Текстурные признаки
- •1.6. Морфологические методы анализа сцен (по ю.П. Пытьеву) Методы обнаружения объектов, заданных эталонами
- •Согласованная фильтрация.
- •Корреляционное обнаружение.
- •Морфологический подход ю.П. Пытьева.
- •Форма изображения как инвариант преобразований изображений, отвечающих вариациям условий регистрации
- •Сравнение изображений по форме
- •Выделение отличий изображений по форме
- •Обнаружение объекта по его изображению и оценка его координат
- •*Морфология на базе кусочно-линейной интерполяции
- •Преобразование Хафа для поиска прямых
- •*Различные способы параметризации прямых
- •Преобразование Хафа для поиска окружностей
- •Анализ аккумулятора при поиске геометрических примитивов
- •Обобщенное преобразование Хафа
- •*Специализированная процедура голосования для поиска эллипсов
- •*Рекуррентное преобразование Хафа в скользящем окне
- •1.8. Математическая морфология (по ж. Серра)
- •Морфологические операции на бинарных изображениях
- •Морфологические операции на полутоновых изображениях
- •Морфологическое выделение «черт» и объектов
- •Морфологический спектр
- •Морфологические скелеты. Непрерывная бинарная морфология Непрерывная бинарная морфология
- •Непрерывное гранично-скелетное представление изображения
- •Обработка и использование скелета
- •*Обобщенные скелетные представления бинарных фигур
- •Алгоритмы утончения дискретного бинарного изображения
- •*Регуляризация скелетов
- •Типы нерегулярностей скелета
- •Устранение нерегулярностей
- •Регуляризация скелета по Тихонову
- •*Селективные морфологии
- •Метод оптических потоков
- •Дифференциальный подход
- •Корреляционный подход
- •Частотный подход
- •Корреляционное слежение.
- •Форматы хранения и передачи цифровых изображений
- •Методы сжатия цифровых изображений
- •Формат bmp
- •Формат pcx
- •Формат gif
- •Формат tiff
- •Формат jpeg
- •Форматы хранения и передачи цифровых видеопоследовательностей
- •Формат avi
- •Формат mpeg
- •Форматы mpeg 1 и mpeg 2
- •Формат mpeg 4
- •Форматы mpeg 7
- •Раздел 2. Распознавание образов.
- •Обучение с учителем. Детерминированные методы, основанные на «близости». Линейные решающие правила. Метод построения эталонов. Метод ближайшего соседа. Метод k ближайших соседей.
- •Линейные решающие правила
- •Метод построения эталонов
- •Методы ближайших соседей
- •Параметрические и непараметрические методы
- •Дискриминантные и моделирующие методы обучения
- •Способность распознавателя к обобщению. Регуляризация.
- •Байесовская теория решений. Случай двух классов. Классификаторы, разделяющие функции и поверхности решений. Вероятности ошибок. Разделяющие функции для случая нормальной плотности.
- •Дискриминантный анализ. Линейный дискриминант Фишера. Персептронная функция критерия. Линейный дискриминантный анализ (lda, дискриминант Фишера)
- •Персептрон Розенблатта
- •Байесовское объединение свидетельств
- •Структурное распознавание
- •Автоматизированное конструирование алгоритмов обнаружения объектов на основе преобразований модельных описаний объектов.
- •Нейросетевое распознавание
- •Нейронные сети ассоциативной памяти. Сети Хопфилда.
- •Многослойные персептроны. Оптимизационное обучение. Метод обратного распространения ошибки.
- •Многослойные персептроны. Правило Хебба.
- •*Связь с байесовским распознаванием
- •Сети встречного распространения. Самоорганизующиеся сети.
Уровни и методы машинного зрения
На протяжении десяти-пятнадцати последних лет в алгоритмическом аспекте последовательность действий по обработке изображения принято рассматривать в согласии с, так называемой модульной парадигмой [30]. Эта парадигма, предложенная Д. Марром на основе длительного изучения механизмов зрительного восприятия человека, утверждает, что обработка изображений должна опираться на несколько последовательных уровней восходящей информационной линии: от «иконического» представления объектов (растровое изображение, неструктурированная информация) – к их символическому представлению (векторные и атрибутивные данные в структурированной форме, реляционные структуры и т.п.). Исходя из этого, в области машинного зрения принято выделять следующие основные этапы обработки данных:
предобработка изображений;
сегментация;
выделение геометрической структуры;
определение относительной структуры и семантики.
Связанные с этими этапами уровни обработки обычно называются соответственно: обработка нижнего уровня, среднего уровня, высокого уровня. В то время как алгоритмы обработки нижнего уровня (фильтрация простых шумов, гистограммная обработка) могут рассматриваться как хорошо проработанные и детально изученные, алгоритмы среднего уровня (сегментация) продолжают сегодня оставаться центральным полем приложения инженерных и исследовательских усилий. За последние годы значительный прогресс был достигнут по отношению к проблемам сопоставления точек и фрагментов изображений (matching) [176], [242], выделения признаков внутри малых фрагментов [172], [215] [226], высокой точности 3D-позиционирования точек [175], [178], что подразумевает соответствующее моделирование и калибровку датчиков и их комбинаций, выделение простых яркостно-геометрических структур типа «точка», «край», «пятно», «прямая линия», «угол» [135], [136], [204], [215], [238].
Методы обработки высокого уровня, относящиеся собственно к «пониманию изображений», по-прежнему представляют собой «вызов» для сообщества исследователей в области компьютерного зрения и искусственного интеллекта. Безусловно, перспектива создания будущих поколений «интеллектуальных машин» в основном зависит от дальнейшей разработки именно этого круга алгоритмов.
В настоящее время известно несколько основных алгоритмических подходов и математических формализмов, используемых при разработке практических систем анализа изображений. Это гистограммные преобразования, анализ проекций, линейная и нелинейная фильтрация изображений, яркостная и текстурная сегментация, корреляционное обнаружение и согласованная фильтрация, морфологический подход Ю.П. Пытьева, математическая морфология Серра, метод «нормализации фона», преобразование Хафа, структурно-лингвистический подход и ряд других. Большинство этих методов будут рассмотрены в данной книге.
Значительный вклад в разработку методов и алгоритмов обработки изображений и машинного зрения внесли работы М.П.Ярославского, П.А.Бакута, В.К.Злобина, В.К.Баклицкого, В.Г.Лабунца, В.Л.Левшина, Ю.П.Пытьева, Серра, Р.Харалика, Е.Дэвиса, У.Гренандера, К.Ту и многие другие. За последние десятилетия создано множество успешных систем машинного зрения, в которых в тех или иных сочетаниях реализованы упомянутые подходы и парадигмы. Однако единого математического формализма и единой общепризнанной методики разработки алгоритмов анализа изображений по-прежнему не существует, и, следовательно, наука об обработке изображений все еще находится в развитии, переживая период роста, чреватый возможностью появления в любой момент новых самых неожиданных и революционных методик и теорий.