Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
OTVETY_PO_FIZIKE.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
781.47 Кб
Скачать

3.Фотоны. Корпускулярно-волновая природа света и частиц.

Фото́н — элементарная частицаквант электромагнитного излучения (в узком смысле — света). Это безмассовая частица, способная существовать только двигаясь со скоростью светаЭлектрический заряд фотона также равен нулю. Фотон может находиться только в двух спиновых состояниях с проекциейспина на направление движения (спиральностью) ±1. Этому свойству в классической электродинамике соответствует круговая правая и левая поляризация электромагнитной волны. Фотону как квантовой частице свойственен корпускулярно-волновой дуализм, он проявляет одновременно свойства частицы и волны.

Корпускулярно-волновая двойственность света

Такие явления, как интерференция и дифракция света, убедительно свидетельствуют о волновой природе света. В то же время закономерности равновесного теплового излучения, фотоэффекта и эффекта Комптона можно успешно истолковать с классической точки зрения только на основе представлений о свете, как о потоке дискретных фотонов. Однако волновой и корпускулярный способы описания света не противоречат, а взаимно дополняют друг друга, так как свет одновременно обладает и волновыми и корпускулярными свойствами.

Волновые свойства света играют определяющую роль в закономерностях его интерференции, дифракции, поляризации, а корпускулярные — в процессах взаимодействия света с веществом. Чем больше длина волны света, тем меньше импульс и энергия фотона и тем труднее обнаружить корпускулярные свойства света. Например, внешний фотоэффект происходит только при энергиях фотонов, больших или равных работе выхода электрона из вещества. Чем меньше длина волны электромагнитного излучения, тем больше энергия и импульс фотонов и тем труднее обнаружить волновые свойства этого излучения. Например, рентгеновское излучение дифрагирует только на очень «тонкой» дифракционной решетке — кристаллической решетке твердого тела.

Формула де Бройля устанавливает зависимость длины волны  , связанной с движущейся частицей вещества, от импульса   частицы:

4.Ядерная модель атома. Результаты квантово-механического рассмотрения поведения электрона в водородоподобном атоме. Излучение и поглощение энергии атомами и молекулами.

Ядерная (Планетарная) Модель Атома

На основании результатов своих экспериментов Э. Резерфорд предложил модель атома, по которой в центре атома расположено положительно заряженное ядро диаметром порядка 10 15 м, в котором сосредоточена почти вся масса атома. Вокруг ядра, подобно планетам солнечной системы, обращаются электроны. Так как атом в обычном состоянии электронейтрален, то суммарный заряд электронов равен по модулю заряду ядра.

Пpи излучении света атом скачком пеpеходит с одного энеpгетического уpовня на дpугой. Его энеpгия изменяется на конечную и на вполне опpеделенную величину, pавную энеpгии фотона.

Таким обpазом, в основе всей теоpии излучения (и поглощения) света атомами лежит пpостая фоpмула, введенная в 1913 году Н. Боpом:

5.Состав ядер атомов. Радиоактивность ядер. Реакции деления и синтеза ядер.

 Ядро атома любого вещества состоит из протонов и нейтронов. (Общее название протонов и нейтронов — нуклоны.) Число протонов равно заряду ядра и совпадает с номером элемента в таблице Менделеева. Сумма числа протонов и нейтронов равна массовому числу. 

Химические вещества, занимающие одно и то же место в таблице Менделеева, но имеющие разную атомную массу, называются изотопами. Ядра изотопов отличаются числом нейтронов.

Радиоактивность- самопроизвольное (спонтанное) превращение неустойчивого изотопа химического элемента в другой изотоп (обычно - изотоп другого элемента). Сущность явления Р. состоит в самопроизвольном изменении состава атомного ядра, находящегося в основном состоянии либо в возбуждённом долгоживущем (метастабильном) состоянии. Такие превращения сопровождаются испусканием ядрами элементарных частиц либо других ядер, например ядер 2He (a-частиц). Все известные типы радиоактивных превращений являются следствием фундаментальных взаимодействий микромира: сильных взаимодействий (ядерные силы) или слабых взаимодействий.

Ядерная реакция деления — процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном альфа-частицы), нейтроны и гамма-кванты. Деление бывает спонтанным (самопроизвольным) и вынужденным (в результате взаимодействия с другими частицами, прежде всего, с нейтронами). Деление тяжёлых ядер — экзоэнергетический процесс, в результате которого высвобождается большое количество энергии в виде кинетической энергии продуктов реакции, а также излучения.

Деление ядер служит источником энергии в ядерных реакторах и ядерном оружии

Ядерная реакция синтеза — процесс слияния двух атомных ядер с образованием нового, более тяжелого ядра.

Кроме нового ядра, в ходе реакции синтеза, как правило, образуются так же различные элементарные частицы и (или) кванты электромагнитного излучения.

Без подвода внешней энергии слияние ядер невозможно, так как положительно заряженные ядра испытывают силы электростатического отталкивания — это так называемый «Кулоновский барьер». Для синтеза ядер необходимо сблизить их на расстояние порядка 10−15 м, на котором действие сильного взаимодействия будет превышать силы электростатического отталкивания. Это возможно в случае, если кинетическая энергия сближающихся ядер превышает кулоновский барьер.

Такие условия могут сложится в двух случаях:

  • Если атомные ядра (ионы, протоны или α-частицы) обладающие большой кинетической энергией встречают на своем пути другие атомные ядра. В природе это возможно, например, при столкновении частиц ионизированного газа, например в ионосфере Земли, с частицами космических лучей. Искусственно такие реакции реализуются в вакуумных камерах с использованием естественных источников высокоэнергетических α-частиц (впервые 1919, Э.Резерфорд), а так же ускорителях заряженных частиц (впервые 1931, Р.Ван-де-Грааф)[4] и установках на подобие фузора или реактора «Поливелл» в которых кинетическая энергия заряженным частицам придается электрическим полем. Таким путем были получены первые искусственные ядерные реакции синтеза и многие искусственно синтезированные химические элементы.

  • Если вещество нагревается до чрезвычайно высоких температур в звезде или термоядерном реакторе. Согласно кинетической теории, кинетическую энергию движущихся микрочастиц вещества (атомов, молекул или ионов) можно представить в виде температуры, а следовательно, нагревая вещество можно достичь ядерной реакции синтеза. В таком случае говорят о термоядерном синтезе или термоядерной реакции.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]