Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УМ_Опорный конспект лекций.doc
Скачиваний:
8
Добавлен:
01.05.2025
Размер:
8.38 Mб
Скачать

3.1.1.Факсимильная связь

Факсимильная (или фототелеграфная) связь – это электрический способ передачи графической информации – неподвижного изображения текста или таблиц, чертежей, схем, графиков, фотографий и т.п. Осуществляется при помощи факсимильных аппаратов: телефаксов и каналов электросвязи (главным образом телефонных).

Первый телефакс был запатентован в 1843 г. шотландским изобретателем Александром Бэйном. Его «записывающий телеграф» работал на телеграфных линиях и был способен передавать только чёрно-белые изображения, без полутонов.

3.1.2.Оптоволоконные линии связи

В качестве проводных линий связи используются в основном телефонные линии и телевизионные кабели. Наиболее развитой является телефонная проводная связь. Но ей присущи серьёзные недостатки: подверженность помехам, затухание сигналов при передаче их на значительные расстояния и низкая пропускная способность. Всех этих недостатков лишены оптоволоконные линии – вид связи, при котором информация передаётся по оптическим диэлектрическим волноводам («оптическому волокну»).

Рис. 6.1. Оптоволоконный кабель

Оптическое волокно считается самой совершенной средой для передачи больших потоков информации на большие расстояния. Оно изготовлено из кварца, основу которого составляет двуокись кремния – широко распространённого и недорогого материала, в отличие от меди. Оптическое волокно очень компактное и лёгкое, оно имеет диаметр всего около 100 мкм.

Оптоволоконные линии отличают от традиционных проводных линий:

  • очень высокая скорость передачи информации (на расстояние более 100 км без ретрансляторов);

  • защищённость передаваемой информации от несанкционированного доступа;

  • высокая устойчивость к электромагнитным помехам;

  • стойкость к агрессивным средам;

  • возможность передавать по одному волокну одновременно до 10 млн телефонных разговоров и одного миллиона видеосигналов;

  • гибкость волокон;

  • малые размеры и масса;

  • искро-, взрыво- и пожаробезопасность;

  • простота монтажа и укладки;

  • низкая себестоимость;

  • высокая долговечность оптических волокон – до 25 лет.

В настоящее время обмен информацией между континентами осуществляется, главным образом, через подводные оптоволоконные кабели, а не через спутниковую связь. При этом главной движущей силой развития подводных оптоволоконных линий связи является Интернет.

Подводные кабели связи существуют уже более 150 лет. В 1851 г. инженер Брет проложил первый подводный кабель через Ла-Манш, соединив таким образом телеграфной связью Англию с континентальной Европой. Это стало возможным благодаря применению гуттаперчи – вещества, которое способно изолировать в воде провода, несущие ток.

3.2.Беспроводные системы связи

Беспроводные системы связи осуществляются по радиоканалам. Первую такую беспроводную связь – радиотелеграф (тогда его называли «беспроволочный телеграф») – изобрёл А.С. Попов и развил Г. Маркони. Главную роль в создании радиовещания (или звукового вещания) сыграли изобретения Ф. Брауна, Ли де Фореста, А. Мейсснера, Э.Г. Армстронга. В 1913 г. Э. Армстронг изобрёл регенеративный радиоприемник (с обратной связью), а в 1918 г. – супергетеродинный радиоприёмник, схема которого используется и сегодня. Однако в них тогда применялась амплитудная модуляция, не позволявшая получить высокое качество звука радиоприёмника из-за невозможности подавления помех в радиоэфире. Она обеспечивала верхнюю границу частотного диапазона не более 5000 Гц.

1934 г. Э. Армстронг изобрёл частотную модуляцию (ЧМ), позволившую избавиться от помех и обеспечивавшую высококачественное воспроизведение звука радиоприёмника и передачу полного диапазона слышимости человеческого уха – звуков от барабана до флейты, в диапазоне от 50 Гц до 15 000 Гц.

В 1930-е гг. были освоены метровые, а в 40-е – дециметровые и сантиметровые волны, распространяющиеся прямолинейно, не огибая земной поверхности (т.е. в пределах прямой видимости), что ограничивает прямую связь на этих волнах расстоянием в 40–50 км в равнинной местности, а в горных районах – в несколько сотен километров. Поскольку ширина диапазонов частот, соответствующих этим длинам волн, – от 30 Мгц до 30 Ггц – в 1000 раз превышает ширину всех диапазонов частот ниже 30 Мгц (волны длиннее 10 м), они могут передавать огромные потоки информации и осуществлять многоканальную связь. В то же время ограниченная дальность распространения и возможность получения острой направленности с антенной несложной конструкции позволяют использовать одни и те же длины волн во множестве пунктов без взаимных помех. Передача на значительные расстояния достигается применением многократной ретрансляции в линиях радиорелейной связи или с помощью спутников связи, находящихся на большой высоте (около 40 тыс. км) над Землей (см. «Космическая связь»). Позволяя вести на больших расстояниях одновременно десятки тысяч телефонных разговоров и передавать десятки телевизионных программ, радиорелейная и спутниковая связь по своим возможностям являются значительно более эффективными, чем обычная дальняя радиосвязь на метровых волнах.