Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сборник ПЗ по ЭВМ.DOC
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.81 Mб
Скачать

Задания для самостоятельной работы

  1. Найдите общее решение уравнений:

1) ; 2) ; 3) ;

4) ; 5) ;

6) ; 7) ;

8) .

  1. Найдите частные решения уравнений, удовлетворяющие указанным начальным условиям:

1) ; при ;

2) ; при ;

3) ; при ;

4) ; при ;

5) ; при ;

6) ; при ;

7) ; при .

  1. Найдите общие решения уравнения:

1) ; 2) ;

3) ; 4) ;

5) ; 6) .

Вопросы для самоконтроля:

  1. Какое уравнение называется дифференциальным?

  2. Что называется решением дифференциального уравнения?

  3. Какое решение дифференциального уравнения называется общим?

  4. Какое решение дифференциального уравнения называется частным?

  5. Какие дифференциальные уравнения называются уравнениями первого порядка?

  6. Какие дифференциальные уравнения называются уравнениями с разделяющимися переменными?

Практическое занятие №21

Тема: Решение линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами

Цель: Формирование навыков решения линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами

На выполнение практической работы отводится 2 часа

Требования к выполнению практической работы:

1.Ответить на теоретические вопросы

2.Оформить задания в тетради для практических работ

Теоретический материал

Уравнение, содержащее производные (или дифференциалы) не выше второго порядка, называется дифференциальным уравнением второго порядка. В общем виде уравнение второго порядка записывается следующим образом:

.

Общее решение дифференциального уравнения второго порядка содержит две произвольные постоянные.

Линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида:

, (1)

где и - постоянные величины.

Для отыскания общего решения уравнения (1) составляется характеристическое уравнение

, (2)

которое получается из уравнения (1) заменой , и на соответствующие степени , причем сама функция заменяется единицей.

Тогда общее решение дифференциального уравнения (1) строится в зависимости от корней и характеристического уравнения (2). Здесь возможны три случая.

I случай: Корни и - действительные и различные. В этом случае общее решение уравнения (1) имеет вид

. (3)

II случай: Корни и - действительные и равные: . Тогда общее решение уравнения (1) записывается так:

. (4)

III случай: Корни и - комплексно – сопряженные: , . В этом случае общее решение уравнения (1) записывается следующим образом:

. (5)

Примеры

Задание 1: Решить уравнение: .

Решение: Составим характеристическое уравнение и найдем его корни: . Отсюда следует, что , . Так как корни характеристического уравнения действительные и разные, то общее решение данного дифференциального уравнения согласно формуле (3) запишется так: .

Задание 2: Найти частное решение уравнения , если и при .

Решение: Составим характеристическое уравнение . Решая его, получим, , . Так как корни характеристического уравнения действительные и различные, то общее решение дифференциального уравнения имеет вид: , то есть .

Для нахождения искомого частного решения нужно определить значения постоянных и . Подставив в общее решение значения и , получим .

Продифференцировав общее решение и подставив в полученное выражение значения и , имеем , отсюда следует, что . Из данного выражения находим: , .

Таким образом, искомое частное решение имеет вид .

Задание 3: Решить уравнение .

Решение: Составим характеристическое уравнение и найдем его корни: , . Характеристическое уравнение имеет равные действительные корни; поэтому согласно формуле (4) общее решение данного дифференциального уравнения записывается в виде .

Задание 4: Найдите частное решение уравнения , если и при .

Решение: Так как характеристическое уравнение имеет равные действительные корни , то общее решение данного дифференциального уравнения записывается в виде

.

Дифференцируя общее решение, имеем

.

Подставив начальные данные в выражение для и , получим систему уравнений

, или , откуда и . Следовательно, искомое частное решение имеет вид .