Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сборник ПЗ по ЭВМ.DOC
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.81 Mб
Скачать

Задания для самостоятельной работы

  1. Найти частные производные следующих функций:

1) ; 2) ;

3) ; 4) ; 5) ;

6) ; 7) ; 8) ;

9) ; 10) ; 11) ;

12) ; 13) .

  1. Найти полные дифференциалы заданных функций:

1) ; 2) ; 3) ;

4) ; 5) ; 6) ;

7) ; 8) 9) .

  1. Вычислить значения полных дифференциалов функций:

1) при , , , ;

2) при , , , ;

3) при , , , ;

4) при , , , , , .

  1. Проверить, что функция удовлетворяет уравнению .

Вопросы для самоконтроля:

  1. Что называется частной производной функции по аргументу ?

  2. Что называется частной производной функции по аргументу ?

  3. Дайте определение полного дифференциала функции в некоторой точке.

  4. В чем заключается свойство инвариантности полного дифференциала первого порядка?

Практическое занятие №18

Тема: Вычисление двойных интегралов

Цель: Формирование навыков вычисления двойных интегралов

На выполнение практической работы отводится 2 часа

Требования к выполнению практической работы:

1.Ответить на теоретические вопросы

2.Оформить задания в тетради для практических работ

Теоретический материал

Пусть в некоторой ограниченной замкнутой области плоскости задана непрерывная функция , где точка . Разобьем эту область произвольным образом на частичных плоских ячеек , имеющие площади . В каждой такой ячейке выберем по одной произвольной точке и вычислим значения функции во взятых точках. Составим так называемую интегральную сумму функции по области :

. (1)

Двойным интегралом от функции по области называется предел интегральной суммы (1) при стремлении к нулю наибольшего из диаметров всех ячеек данного разбиения:

(2)

Диаметром фигуры называется наибольшее из расстояний между ее точками.

Основные свойства двойного интеграла

  1. Двойной интеграл по области от алгебраической суммы функций равен алгебраической сумме двойных интегралов от слагаемых функций по этой же области:

.

  1. Постоянный множитель можно вынести за знак двойного интеграла:

.

  1. Область интегрирования двойного интеграла можно разбить на части, то есть если область состоит из двух непересекающихся областей и , то

.

Примеры

Задание 1: Вычислить повторный интеграл .

Решение: Вычислим сначала внутренний интеграл по переменной , считая постоянным:

.

Задание 2: Вычислить двойной интеграл по области , ограниченной прямыми , , и .

Решение: Область является простой относительно осей и (рис. 1), поэтому для вычисления интеграла можно использовать любую из формул или . Сначала вычислим двойной интеграл по первой формуле: . Вычислив внутренний интеграл по переменной при постоянном , находим

. Подставив это выражение во внешний интеграл, получим .

Теперь вычислим двойной интеграл по второй формуле . Найдем внутренний интеграл: . Далее найдем внешний интеграл: , то есть получили тот же ответ.