Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
11 ДКР_геометрия.docx
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
855.66 Кб
Скачать

Іі частина (4 бали)

Розв’язання завдань 6 – 7 повинно мати короткий запис рішення без обґрунтування. Вірне рішення кожного завдання оцінюється двома балами

6. У коло вписані квадрат і правильний шестикутник. Периметр квадрата дорівнює 84 мм. Знайдіть периметр шестикутника.

7. Із точки, що знаходиться на відстані 4 см від площини, проведено до цієї площини дві похилі довжиною 5 см і  см. Кут між проекціями цих похилих дорівнює 60о. Знайдіть відстань між основами похилих.

Ііі частина (3 бали)

Розв’язання завдання 8 повинно мати розгорнутий запис рішення з обґрунтуванням кожного етапу. Завдання оцінюється трьома балами.

8. Доведіть, що коли площина і пряма, яка не лежить у цій площині, паралельні одній і тій же площині, то вони паралельні між собою.

Варіант 10

І частина (5 балів)

Завдання 1 - 5 мають по чотири варіанти відповіді, з яких тільки одна вірна. Оберіть вірну відповідь. Вірна відповідь кожного завдання оцінюється одним балом.

1. На мал. 1 зображено прямокутний паралелепіпед АВСDA1B1C1D1. Переріз даного многогранника площиною, яка проходить через середини бічних ребер  це…

А ) шестикутник; Б) прямокутник;

В) трикутник; Г) відрізок.

2. Як розміщені два відрізка, якщо їх паралельні проекції на площину перетинаються?

А) перетинаються; Б) паралельні;

В) не перетинаються; Г) не можна. визначити.

3 . На мал. 2 АВ − дотична до кола з центром у точці О, точка В − точка дотику, , відстань від точки С до прямої АВ дорівнює диаметру кола. Знайдіть кут між площинами АВС і АОВ.

А) 60º; Б) 30º;

В) 45º; Г) 90º.

4 . На мал. 3 DO   α, OB   a. Порівняйте довжини відрізків DA і DB.

А) DA > DB; Б) DA < DB;

В) DA = DB; Г) не можна визначити.

5. Площа ромба дорівнює 36 см2, а кут між площиною його проекції та площиною ромба становить 60°. Знайдіть площу проекції ромба.

А) 49 см2; Б) 18 см2; В) 20 см2; Г) 62см2.

Іі частина (4 бали)

Розв’язання завдань 6 – 7 повинно мати короткий запис рішення без обґрунтування. Вірне рішення кожного завдання оцінюється двома балами

6. Діагональ рівнобічної трапеції дорівнює 12 см і перпендикулярна до бічної сторони, а також є бісектрисою кути при основі, що дорівнює 60о. Обчисліть площу трапеції.

7. Із точки, що знаходиться на відстані 12 см від площини, проведено до цієї площини дві похилі довжиною 13 см і 20 см. Відстань між основами похилих дорівнює 19 см. Знайдіть кут між проекціями похилих.

Ііі частина (3 бали)

Розв’язання завдання 8 повинно мати розгорнутий запис рішення з обґрунтуванням кожного етапу. Завдання оцінюється трьома балами.

8. Пряма b лежить в площині α. Пряма а не лежить в площині α і паралельна прямій b. Через точку М, яка лежить в площині α (М b), проведена пряма с, паралельна а. Доведіть, що с лежить в площині α.

Варіант 11

І частина (5 балів)

Завдання 1 - 5 мають по чотири варіанти відповіді, з яких тільки одна вірна. Оберіть вірну відповідь. Вірна відповідь кожного завдання оцінюється одним балом.

1. Дано куб АВСDA1B1C1D1. Назвіть переріз куба, який проходить через ребро АА1 і містить діагональ нижньої основи.

А) АA1D1D; Б) АA1B1B; В) АA1C1C; Г) не можна визначити.

2. Площини і паралельні. Точка М не належить жодній з них. Скільки всього існує прямих, які проходять через М і паралельні площинам і ?

А) одна; Б) дві; В) безліч; Г) визначити наможливо

3 . На мал. зображено трикутну піраміду SABC, у якої ASC=85°, SAC=65°. Площини MNL і SAC паралельні. Визначте NML.

А) 85°; Б) 65°;

В) 30°; Г) 150°.

4. Із точки А до площини проведено перпендикуляр і похилу, довжина якої 20 см. Кут між похилою і площиною 60°. Знайдіть довжину перпендикуляра.

А) 10 см; Б)  см; В)  см; Г)  см.

5. Площа трикутника дорівнює 36 см2, а його проекції 18 см2. Знайдіть кут між площиною проекції і площиною даного трикутника.

А) 90°; Б) 60°; В) 45°; Г) 30°.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]