
- •1. Основные понятия и определения; звено, кинематическая пара, механизм, машина.
- •2. Силовой анализ механизма. Определение инерционных нагрузок.
- •1. Кинематические пары. Классификация кинематических пар.
- •2. Основная теорема зацепления.
- •1. Определение степени подвижности плоских механизмов(Структурная формула Чебышева).
- •2. Сложные зубчатые механизмы.
- •1. Структурные группы, разновидности. Класс и порядок структурной группы.
- •2. Дифференциальные механизмы. Кинематика дифференциала.
- •1. Модификация диад и их применение в механизмах.
- •2. Виды зубчатых передач.
- •1. Правила структурного синтеза механизмов. Примеры структурного синтеза рычажных механизмов.
- •2. Эвольвента окружности и ее свойства.
- •1. Методы кинематического исследования механизма.
- •2. Синтез планетарного механизма по условию сборки.
- •1. Кинематический анализ механизма с помощью диаграмм(графическое дифференцирование).
- •2. Основные размеры зубчатых колес, нарезанных без смещения.
- •1. Построение плана скоростей на примере четырехзвенного шарнирного механизма.
- •2. Кулачковые механизмы. Типы плоских механизмов, параметры кулачка.
- •1. Построение плана скоростей на примере кривошипно-ползунного механизма.
- •2. Профиль кулачка и его влияние на режимы работы.
- •1. Построение плана скоростей на примере кулисного механизма.
- •2. Условия возникновения подрезания ножки зуба. Метод исключения подрезания.
- •1. Использование теоремы подобия при кинематическом исследовании рычажных механизмов
- •2. Определение передаточного отношения планетарного механизма.
- •1. Силовой анализ механизма. Определение инерционных нагрузок.
- •2. Определение зоны возможного расположения центров кулачка.
- •1. Силовой анализ методом «жесткого рычага» н.Е.Жуковского.
- •2.Виды смещения инструмента при нарезании и их влияние на форму зуба.
- •1. Силовой анализ механизма. Определение инерционных нагрузок.
- •2. Синтез планетарного механизма по условию соседства.
- •1) Силовой анализ механизма необходим для определения нагрузок возникающих … для дальнейшего расчета на прочность, жесткость.
- •1. Силовой анализ методом «жесткого рычага» н.Е.Жуковского.
- •2. Методы нарезания зубьев зубчатых колес.
- •1. Силовой анализ рычажного механизма путем разбиения на структурные группы.
- •2. Синтез планетарного механизма по условию соосности.
- •1. Угол давления и угол передачи в кулачковых механизмах.
- •2. Понятие о планетарных и дифференциальных механизмах. Степень подвижности.
- •1. Построение профиля кулачка методом обращенного движения
- •2. Графическое решение планетарных механизмов.
1. Силовой анализ механизма. Определение инерционных нагрузок.
2. Синтез планетарного механизма по условию соседства.
1) Силовой анализ механизма необходим для определения нагрузок возникающих … для дальнейшего расчета на прочность, жесткость.
Инерционная нагрузка возникает из-за сопротивления предмета ускоренному движению. Нагрузка, действующая на какою-либо часть летательного аппарата от массовых сил.
2) колеса, оси которых подвижны, называют "сателлитами"; - для заметки!
Обеспечение условия соседства сателлитов заключается в том, чтобы сателлиты поставленные для повышения жесткости, прочности, а также уравновешивания масс не задевали друг друга.
Сателлиты размещаются на окружности радиуса aw. Вершины зубьев сателлитов не будут мешать движению друг друга, если выполняется условие:
max (da2,3) < l B2B3 (da2,3)
Для зубчатых колес без смещения максимальный из диаметров сателлитов равен:
max (da2,3) = max [(Z2,3 + 2) · m]
Расстояниемеждуосямисателлитов
lB2B3 = 2aw · sin (φb/2) = (r1 + r2) · sin (π/k)= (Z1 + Z2) · m · sin (π/k)
где в – угол между двумя соседними сателлитами.
Подставим полученные выражения в неравенство и получим условие соседства:
,
.
Билет 16.
1. Силовой анализ методом «жесткого рычага» н.Е.Жуковского.
2. Методы нарезания зубьев зубчатых колес.
1) По этому методу можно определить уравновешивающую силу, не определяя реакции в кинематических парах. Если все силы, действующие на звенья механизма, перенести параллельно самим себе в соответствующие точки повернутого на 90o (в любую сторону) плана скоростей, то сумма моментов этих сил относительно полюса будет равна нулю. План скоростей рассматривается как жесткий рычаг с опорой в полюсе P. Если на звено действует пара сил, то на повернутый план скоростей нужно перенести каждую составляющую этой пары отдельно без изменения ее направления. По условию теоремы Жуковского уравнение моментов относительно полюса повернутого плана скоростей.
2) Существует множество вариантов изготовления зубчатых колес. В их основу положены два принципиально отличных метода:
метод копирования, при котором рабочие кромки инструмента по форме соответствуют обрабатываемой поверхности ( конгруентны ей, т. е. заполняют эту поверхность как отливка заполняет форму );
метод огибания, при котором инструмент и заготовка за счет кинематической цепи станка выполняют два движения - резания и огибания (под огибанием понимается такое относительное движение заготовки и инструмента , которое соответствует станочному зацеплению, т. е. зацеплению инструмента и заготовки с требуемым законом изменения передаточного отношения).
Из вариантов изготовления по способу копирования можно отметить:
Нарезание зубчатого колеса профилированной дисковой или пальцевой фрезой (проекция режущих кромок которой соответствует конфигурации впадин). При этом методе резание производится в следующем прядке: прорезается впадина первого зуба, затем заготовка с помощью делительного устройства (делительной головки) поворачивается на угловой шаг и прорезается следующая впадина. Операции повторяются пока не будут прорезаны все впадины. Производительность данного способа низкая, точность и качество поверхности невысокие.
Отливка зубчатого колеса в форму. При этом внутренняя поверхность литейной формы конгруентна наружной поверхности зубчатого колеса. Производительность и точность метода высокая, однако при этом нельзя получить высокой прочности и твердости зубьев.
Из вариантов изготовления по способу огибания наибольшее распространение имеют:
Обработка на зубофрезерных или зубодолбежных станках червячными фрезами или долбяками. Производительность достаточно высокая, точность изготовления и чистота поверхностей средняя. Можно обрабатывать колеса из материалов с невысокой твердостью поверхности.
Накатка зубьев с помощью специального профилированного инструмента. Обеспечивает высокую производительность и хорошую чистоту поверхности. Применяется для пластичных материалов, обычно на этапах черновой обработки. Недостаток метода образование наклепанного поверхностного слоя, который после окончания обработки изменяет свои размеры.
Обработка на зубошлифовальных станках дисковыми кругами. Применяемся как окончательная операция после зубонарезания (или накатки зубьев) и термической обработки. Обеспечивает высокую точность и чистоту поверхности. Применяется для материалов с высокой поверхностной прочностью.
Билет 17.