
- •Компьютерная графика
- •1. Введение в компьютерную графику
- •2. Цветовое пространство
- •3. Основы растровой графики
- •3.1. Общие сведения
- •3.2. Источники получения и средства работы с растровой графикой
- •3.3. Достоинства и недостатки растровой графики
- •4. Основы векторной графики
- •4.1. Общие сведения
- •4.2. Средства создания векторных изображений
- •4.3. Достоинства и недостатки векторной графики
- •5. Форматы графических изображений
- •5.1. Общие сведения
- •5.2. Алгоритмы сжатия графической информации
- •5.3. Растровые форматы
- •5.4. Универсальные и векторные графические форматы
- •6. Взаимные преобразования растровой и векторной графики
- •7. Основы трехмерной графики
- •7.1. Общие сведения
- •7.2. Рабочее пространство
- •7.3. Моделирование объектов
- •7.4. Материалы и карты
- •7.5. Анимация
- •7.6. Визуализация
- •8. Пример разработки нового изделия с использованием средств автоматизации дизайна
- •8.1. Система программного обеспечения Alias|Wavefront
- •8.2. Профессиональные графические планшеты для проектирования
- •8.3. Этапы разработки промышленного изделия
7. Основы трехмерной графики
7.1. Общие сведения
Наряду с программами традиционной 2D-графики в последнее десятилетие широкое распространение и популярность получили программы ЗD-моделирования, анимации и визуализации. При этом такие известные программные решения, как 3D Studio МАХ от компании Discreet (подразделения Autodesk, Inc.) или Maya от компании Alias|Wavefront являются, по сути, гибридными графическими пакетами. С одной стороны, они предоставляют дизайнеру возможность манипулирования 2D- и 3D- векторными объектами, с другой, результатом работы (финальной визуализации) является растровое изображение - отдельный кадр или видеоролик.
В упрощенном виде для пространственного моделирования объекта требуется:
спроектировать и создать виртуальный каркас («скелет») объекта, наиболее полно соответствующий его реальной форме;
спроектировать и создать виртуальные материалы, по физическим свойствам визуализации похожие на реальные;
присвоить материалы различным частям поверхности объекта («спроектировать текстуры на объект»);
настроить физические параметры пространства, в котором будет действовать объект, - задать освещение, гравитацию, свойства атмосферы,свойства взаимодействующих объектов и поверхностей.
Понятно, что традиционная 2D-плоскость рисунка (как, например, в графических редакторах CorelDRAW, Adobe Illustrstor или Macromedia Free Hand) для этой цели не подходит. В данном случае требуется такое описание рабочего пространства, в котором можно создавать не только геометрическую форму моделируемых трехмерных объектов, но и их взаимное расположение как в статике, так и в движении.
Все программы 3D-графики, прежде всего, позволяют использовать декартову (картезианскую) систему координат (Cartesian coordinate system).
Реже, но все же достаточно часто, используются полярная цилиндрическая система координат (polar cylindrical coordinate system) и полярная сферическая система координат (polar spherical coordinate system).
7.2. Рабочее пространство
В зависимости от задачи и этапа работы (например, исходное моделирование формы объекта или последующее размещение уже готовых объектов на «сцене») можно выбирать различные типы пространств и связанных с ними координатных систем.
Чаще всего программы трехмерного моделирования предоставляют следующие варианты пространств:
Пространство объекта (object space), которое предназначено для моделирования (описания) формы объекта в его собственной (локальной) системе координат безотносительно того, где он будет размещен на сцене, как ориентирован или масштабирован.
Мировое пространство (world space) используется для размещения объектов на сцене, осуществления аффинных трансформаций (перемещения, поворота и масштабирования объектов), описания освещения сцены, вычисления столкновений между объектами при моделировании динамики их движения и т.п.Это единое пространство для всех объектов.
Видовое пространство (view space) ассоциировано с виртуальным наблюдателем (обычно камерой) или определенной проекцией сцены (например, фронтальным видом) и описывает ту часть сцены, которая доступна для просмотра и работы в видовом окне (viewport). Это своего рода точка зрения.
Экранное пространство (screen space) - это D-пространство (плоскость), в котором отображаются аксонометрические (axonometric) или перспективные (perspective) проекции 3D-объектов на плоскость поверхности монитора.
UVW-параметрическое пространство (UVW parametric space) используется при математическом моделировании сложных кривых и поверхностей (например, NURBS-объектов) или для задания UVW-координат текстурирования поверхностей (UVW mapping coordinates).