
- •Проблемы экспертной оценки эффективности комплексных проектов Александров а.В., Гончар о.А.
- •Образование в области микроэлектроники в современных условиях Анциферова в.И., Евдокимова с.А.
- •Математическая модель механизма противоопухолевого действия вирусных вакцин Бабушкина н.А.
- •Оптимизация интегрального производственного цикла виртуального предприятия Ван Цзин (кнр), Варжапетян а.Г.
- •Разработка и применение системы автоматизированного проектирования систем хладоснабжения и холодильно-технологических комплексов хранения и переработки морских биоресурсов (сапр хтк) Грачева м.М.
- •Инновационные разработки в задачах по обеспечению надёжной эксплуатации подземных газопроводов города москвы Дейнеко с.В.
- •Обеспечение надёжной нефтепереработки в монголии за счет сооружения первого магистрального нефтепровода Дейнеко с.В.
- •Подход к повышению качества и эффективности базовых процессов жизненного цикла программных средств на основе управления знаниями Дмитриев п.И.
- •Подтверждение надежности единичных космических аппаратов Колобов а.Ю., Корчагин е.Н., Жигунова н.Ф.
- •Кварцевое корпусирование микроакселеромтера на поверхностных акустических волнах д.П. Лукьянов, с.Ю. Шевченко, а.С. Кукаев, д.В. Сафронов, е.П. Филиппова
- •Математическое моделирование технологического процесса изготовления многослойных печатных плат Иевлев в.И.
- •Математическое моделирование технологического процесса изготовления многослойных печатных плат Иевлев в.И.
- •Анализ и управление рисками ит-сервиса на всех стадиях его жизненного цикла Киселева т.В., Маслова е.В.
- •Разработка интерактивных электронных технических руководств (иэтр) в локальном и сетевом исполнении, их применение в качестве средства поддержки учебного процесса в вузе Клименко т.С.
- •Проблемные вопросы оценки безотказности космических аппаратов длительного функционирования Корчагин е.Н., Колобов а.Ю.
- •Приближенные оценки безотказности бортовой аппаратуры длительного функционирования Колобов а.Ю., Корчагин е.Н., Комарова м.Е.
- •Методика и программа выбора аналогов по заданному прототипу с помощью графА частичного порядка Кононов м.Е.
- •База данных оценок эффективности функционирования систем массового обслуживания Красников а.К., Красникова в.А., Матис с.В.
- •Математическая модель корабельной системы противовоздушной обороны Красников а.К., Новиков е.С., Щербаков н.С.
- •Построение индикатора радиолокационной информации на основе трехмерных отображений и геоинформационных систеМдля рлс новых поколений. Милованов м.А.
- •Основные аспекты оценки потенциала новшества на основании критериев значимости для результатов научно-технических исследований Назаревич с.А.
- •Системное стратегическое планирование инновационных процессов в транспортном комплексе россии
- •Особенности работы информационной системы вуЗа при проведении приемной кАмпании Поколодина е.В.
- •Исследование инновационных методов построения реалистичных трехмерных изображений в системах синтезированного видения летательных аппаратов
- •Особенности реализации основных требований компетентностного подхода Семенова е.Г., Смирнова м.С., Фролова е.А.
- •Управление процессом практико-ориентированого обучения естественнонаучным дисциплинам Титова о.В.,
- •Реализация компетентностного подхода и контроль качества организации образовательного процесса при магистерской подготовке Семенова е.Г., Смирнова м.С., Фролова е.А.
- •Разработка методов автоматизированного проектирования механических приводов антенн Чивилёв а. Д.
- •Диагностика программного обеспечения элементов робастных систем в. П. Шевчук
- •Анализ надежности системы радиозондирования деревом неисправностей Плохих о.В., Сибилев а.А., Шегал а.А.
- •Исследование стойкости аппаратуры при механических нагрузках высокой интенсивности Батуев в.П. Шелков е.А.,
- •Разработка механизма контроля и оценки качества образования университета Ястребов а.П., Ястребова л.В.
- •Формирование гармоничной инновационной стратегии предприятий в условиях сильной неопределенности на основе когнитивной технологии Иванус а.И.
Математическая модель корабельной системы противовоздушной обороны Красников а.К., Новиков е.С., Щербаков н.С.
(ОАО «Концерн «Моринсис-Агат», НТЦ «Альтаир» ОАО «ГСКБ «Алмаз-Антей»)
Mathematical model of the ship's systems air defence. Krasnikov A.K. Novikov, Y.S., Shcherbakov N.S.
Proposed method of construction of mathematical models of ship air defence systems. Examples of obtaining quantitative estimates of the efficiency of protection, ship connections at various combinations of initial data.
Цель работы. Разработать удобную при практическом применении методику построения математической модели системы противовоздушной обороны (ПВО) корабельного соединения, позволяющей оперативно в интерактивном режиме работы «оператор-система» получать количественные оценки эффективности защиты кораблей при заданных оператором тактико-технических характеристиках системы ПВО и характеристиках налета средств воздушного нападения (СВН) на корабельное соединение.
Постановка задачи. На корабельное соединение производится атака СВН. В состав СВН входят цели различных типов: самолеты дальнего радиолокационного обнаружения, самолеты-источники помех для электронных средств защиты ПВО, противокорабельные крылатые ракеты. На основе комплексной обработки информации, поступающей от корабельных источников информации, определяются статистические характеристики потока СВН и возможный ущерб, который может быть нанесен корабельному соединению. Для каждой зоны эшелонированной системы ПВО задано количество и тип используемых зенитных ракетных комплексов (ЗРК) и вероятн6ость уничтожения СВН одиночной зенитной управляемой ракетой (ЗУР). Требуется определить оценки эффективности ПВО при различных способах организации защиты корабельного соединения.
Метод решения задачи. При разработке модели используется аппарат теории систем массового обслуживания. Система ПВО представляется как многоканальная многофазная система массового обслуживания, на вход которой в случайные моменты времени поступает поток заявок с ограниченным последействием и с известным, вычисленным на основе обработки информации, коэффициентом вариации. Каждая фаза обслуживания характеризуется определенным заданным количеством однотипных каналов обслуживания, между которыми возможна «взаимопомощь» при обслуживании заявок. Известна вероятность правильного обслуживания одним каналом одной поступившей заявки. Каждая фаза обслуживания характеризуется определенным объемом накопителя, в котором могут находиться «нетерпеливые» заявки, не попавшие сразу на обслуживание. Время нахождения в накопителе поступившей заявки является случайной величиной с известным математическим ожиданием.
Практическая полезность. Предложенная математическая модель может найти применение при выработке оптимальной (рациональной) организации системы ПВО корабельного соединения с учетом многочисленных организационных рисков.
ПРИМЕНЕНИЕ ЭЛЕКТРОРАДИОИЗДЕЛИЙ В РАДИОЭЛЕКТРОННОЙ АППАРАТУРЕ С ОТСТУПЛЕНИЯМИ ОТ УСЛОВИЙ И РЕЖИМОВ, УСТАНОВЛЕННЫХ В ДОКУМЕНТАХ НА ПОСТАВКУ. ОПЫТ РАБОТ ПО СОГЛАСОВАНИЮ ПРОТОКОЛОВ РАЗРЕШЕНИЯ
ПРИМЕНЕНИЯ ЭЛЕКТРОРАДИОИЗДЕЛИЙ
Лапина Е.И., Станиславова В.П.
(ОАО НПП «Циклон-Тест»)
Проблема, с которой сталкиваются разработчики современной высоконадежной радиоэлектронной аппаратуры (РЭА) при комплектовании её электрорадиоизделиями (ЭРИ) отечественного производства, связана с несоответствием уровня предъявляемых требований к надёжности ЭРИ, условиям и режимам их применения в составе РЭА уровню аналогичных требований, установленных в документах на поставку ЭРИ.
В соответствии с действующим в настоящее время порядком, установленным ГОСТ 2.124-85 [1] и МОП 44.001.01-21 [2], предприятия-разработчики РЭА обязаны оформить и согласовать протоколы разрешения применения (ПРП) для ЭРИ, фактические режимы, условия и требования к параметрам которых в составе аппаратуры отличаются от установленных в документах на их поставку.
За период с 2006 по настоящее время ОАО НПП «Циклон-Тест» согласовано 388 ПРП по закрепленной в соответствии с МОП 44.001.01-21 за ОАО НПП «Циклон-Тест» номенклатуре изделий:
- изделия квантовой электроники;
-лампы электровакуумные, приборы газоразрядные и рентгеновские;
-трубки электронно-лучевые приемные и преобразовательные;
-индикаторы знакосинтезирующие;
-приборы пьезоэлектрические и фильтры электромеханические;
- резисторы и конденсаторы;
-трансформаторы, дроссели, линии задержки;
-соединители электрические, изделия электроустановочные и присоединительные;
-изделия из ферритов и магнитодиэлектриков.
Проведенный анализ результатов согласования ПРП показал следующее.
Наибольшую долю поступающих на утверждение ПРП составляют ПРП, оформленные по причине несоответствия уровня требований по надежности, предъявляемых к РЭА, уровню требований к показателям надежности ЭРИ, установленных в документах на поставку.
ПРП, в которых фигурируют показатели надежности ЭРИ, установленные в соответствии с комплексом стандартов «Климат-7», появились с 2010 г. Очевидно, что введение в ТУ статистических показателей надежности вместо гарантийных по сути показателей - минимальной наработки и минимального срока сохраняемости не приветствуется потребителями ЭКБ, перед которыми стоит задача обеспечения безотказной наработки аппаратуры в течение длительного времени. Разработчики аппаратуры пытаются требуемый уровень надежности аппаратуры распространить на изделия ЭКБ, предпочтительно в виде гарантийных показателей. Некоторые изготовители ЭКБ, идя навстречу потребителям, вместо установленного в ТУ требования к интенсивности отказов в течение определенной наработки в ПРП согласовывают наработку без упоминания интенсивности отказов. Действует же после введения комплекса стандартов «Климат-7» для интегральных микросхем «хитрый» показатель «наработка до отказа».
Изготовители ЭРИ, как правило, не в состоянии подтвердить требуемый высокий уровень надежности. Это проблема не только номенклатуры ЭРИ, о которой идет речь в данном докладе. Это общая проблема и, по-видимому, решать ее надо предприятиям-изготовителям ЭРИ путем проведения испытаний на представительной выборке изделий в форсированных режимах, а затем подтверждать этот уровень надежности при аттестации производства и в процессе сертификации. Сложность в том, что большинство предприятий-изготовителей ЭКБ не в состоянии в настоящее время подтвердить самостоятельно испытаниями требуемый высокий уровень надежности изделий. Заметим, что нормативные документы по методам ускоренной оценки долговечности и сохраняемости по группам изделий в основной своей массе разработаны до 1990 года (более 20-25 лет назад). Необходима их актуализация. Чаще используются расчетные методы оценки интенсивности отказов при эксплуатации или минимальной наработки по справочным данным о надежности в предположении экспоненциального закона распределения наработок до отказа (постоянности интенсивности отказов), т.е. в предположении отсутствия процессов старения изделий. При этом речь идет о 140 000 часов безотказной наработки, что соответствует 16 годам непрерывной работы.
Не редки случаи, когда к поступающим на утверждение ПРП не прилагаются ни протоколы испытаний, ни даже расчетные оценки требуемой безотказной наработки в облегченных режимах с использованием справочных данных о надежности ЭКБ.
Возникает вопрос о целесообразности оформления ПРП с целью согласования повышенных требований к показателям надежности относительно установленных в ТУ в том случае, когда в принципе отсутствуют результаты испытаний, позволяющие подтвердить требуемый уровень надежности в течение установленной продолжительности функционирования аппаратуры. В настоящее время требование по оформлению ПРП является обязательным требованием в случае наличия несоответствия уровня предъявляемых требований к надёжности ЭРИ, условиям и режимам их применения в составе РЭА уровню аналогичных требований, установленных в документах на поставку ЭРИ. Использование данных, представленных в справочнике по надежности (как это делается сейчас), а именно - базовых значений интенсивности отказов и коэффициентов режимов применения и эксплуатации, не позволяет осуществить достоверную оценку уровня надежности изделий в аппаратуре в течение длительных сроков эксплуатации. Главный конструктор аппаратуры в этом случае с большей осторожностью вынужден будет принимать решение относительно применения таких изделий.
Не редки случаи, когда при оформлении ПРП с установлением повышенных требований к надежности ЭРИ вводится, в качестве дополнительного условия в ПРП, условие проведения отбраковочных испытаний с целью выявления потенциально-ненадежных изделий в партиях по информативным параметрам, т.е. предлагается осуществлять отбор изделий по параметрам, что недопустимо. Порядок проведения отбраковочных испытаний в целях дополнительного отбора покупных изделий по параметрам для беспечения требуемого уровня надежности объекта устанавливается совместным Решением между предприятием-изготовителем и предприятием-потребителем покупных изделий.
Другой типичной ошибкой при оформлении ПРП является то, что протокол оформляется на конкретный типономинал (типоразмер и т.д.) изделия, установленного в аппаратуру, при том, что требования ТУ по параметрам, которые являются предметом рассмотрения ПРП, как правило, распространяются на все типономиналы данного типа изделия, если это не оговорено отдельно. Протокол в данном случае должен оформляться на тип изделия.
По результатам проведенного анализа можно сделать вывод - ПРП, оформленные разными предприятиями, отличаются по форме, составу прилагаемых документов и степени обоснованности принятых решений при их согласовании. Причинами этому являются отсутствие необходимой испытательной базы на многих предприятиях, специалистов должного уровня, информации о надежности изделий из сферы эксплуатации, сведений о физических процессах старения изделий и т.д. По многим направлениям ЭКБ отсутствуют базовые организации, занимающиеся вопросами применения изделий.
Следует также отметить, что в настоящее время не проводятся системные исследования с целью расширения областей применения существующей номенклатуры ЭРИ на основе результатов обобщения и анализа оформленных ПРП для изделий в режимах и условиях, отличных от установленных в документах на поставку. Результаты таких исследований могут быть использованы для разработки рекомендаций о внесении изменений в ТУ на ЭРИ, а разработчиками аппаратуры при выборе комплектующих изделий и схемно-технических решений. Основой для организации такого рода исследований может послужить создание автоматизированной базы данных (АБД) по результатам оформления ПРП с одновременным внедрением электронной формы ПРП. Возможность использования электронной формы предусмотрена ГОСТ 2.124-85. В случае её использования она удостоверяется электронно-цифровыми подписями либо информационно-удостоверяющим листом, выполненным по ГОСТ 2.051-2006 [3].
С целью повышения оперативности работ, обеспечения обоснованности принимаемых решений при оформлении ПРП на ЭРИ, а также для создания АБД по результатам данных работ, предлагается следующее.
1. Разработать нормативный документ, устанавливающий единый порядок согласования и оформления ПРП с учетом специфики ЭРИ, а также определяющий функции головных и базовых организаций, выдающих разрешение на применение ЭРИ по закрепленной номенклатуре.
2. Актуализировать нормативные документы по методам ускоренной оценки долговечности и сохраняемости, разработанные по направлениям ЭРИ.
3. В положении о базовой (головной) организации по направлениям ЭРИ предусмотреть тре6ование о наличии в её структуре службы применения ЭРИ.
4. При формировании плана НИОКР по подпрограмме «Создание электронной компонентной базы для систем, комплексов и образцов ВВСТ» ФЦП «Развитие ОПК РФ на 2011-2020 годы» на 2014 год предусмотреть проведение работ по созданию автоматизированной базы данных по результатам оформления ПРП.
5. Внедрить электронную форму ПРП для ЭРИ с целью её использования в процессе согласования протоколов и создания автоматизированной базы данных по результатам оформления ПРП для ЭРИ.