
- •Плотностью. Определение массы заготовки.
- •Притирка. Область применения и инструмент.
- •Технологический процесс наплавки деталей штампов, его назначение.
- •Принцип статической и динамической балансировки
- •Температура плавления металлов. Свойства получаемых сплавов.
- •Классификация металлов по температуре плавления
- •Технология притирочных работ. Шаржирование притира.
- •Виды и способы притирки
- •Теплопроводность металлов, ее значение в производстве инструмента.
- •Доводка. Технология доводочных работ и материалы.
- •Классификация приспособлений.
- •Ремонт штампов горячей штамповки
- •Тепловое расширение. Его влияние в процессе производства.
- •Полирование. Его назначение и применяемый инструмент.
- •Основные методы механического полирования
- •Основное назначение приспособлений. Типовая конструкция любого приспособления.
- •Основные дефекты штампов горячей штамповки.
- •Пространственная разметка и плоскостная.
- •Магнитные свойства металлов. Их влияние в процессе производства.
- •Разделительные операции холодной листовой штамповки.
- •Типовой технологический процесс изготовления приспособления.
- •Химические свойства металлов.
- •Электрохимическая коррозия
- •Химическая коррозия
- •Ремонт приспособлений. Виды ремонта.
- •Формоизменяющие операции холодной листовой штамповки.
- •Механические свойства металлов и методы их определения.
- •2. Механические свойства.
- •Калибры.
- •Классификация штампов горячей штамповки.
- •Операции холодной объёмной штамповки
- •Деформация тел. Виды деформации
- •Классификация штампов холодной штамповки.
- •Конструкции штампов для работы на молотах.
- •Технология изготовления калибров.
- •Типовой технологический процесс изготовления молотового штампа.
- •Шероховатость поверхности, ее измерение.
- •Технологические свойства металлов и сплавов
- •Горячая объёмная штамповка. Разновидности конструкций штампов
- •Измерительный инструмент и оборудование
- •Технологический процесс изготовления шаблона
- •Классификация средств измерений
- •Жаропрочные сплавы на основе никеля и кобальта
- •Характеристика, маркировка и область применения меди и её сплавов
- •Титан, магний и их сплавы
- •Структурные составляющие железоуглеродистых сплавов
- •Железоуглеродистые сплавы — сталь и чугун
- •Ковкий чугун
- •Белый чугун
- •Серый чугун
- •Классификация и маркировка сталей.
- •2. Назначение.
- •3. Качество.
- •4. Степень раскисления.
- •Химико-термическая обработка.
- •Виды поверхностной закалки.
- •Виды термической обработки.
- •Классификация стали
- •Требования к стали для валков
Титан, магний и их сплавы
Получение титана. Титан - серебристо-белый металл с высокой механической прочностью и высокой коррозионной и химической стойкостью. Для производства титана используют рутил, ильменит, титанит и другие руды, содержащие 10-40% двуокиси титана тio2. После обогащения концентрат титановых руд содержит до 65% тio2. Тio2 и сопутствующие окислы железа разделяют восстановительной плавкой. В процессе плавки окислы железа и титана восстанавливаются, в результате чего получают чугун и титановый шлак, в котором содержится до 80-90% тio2. Титановый шлак хлорируют, в результате чего титан соединяется с хлором в четыреххлористый титан ticl4. Затем четыреххлористый титан нагревают в замкнутой реторте при температуре 950-1000°С в среде инертного газа (аргон) вместе с твердым магнием. Магний отнимает хлор, превращаясь в жидкий mgcl2, а твердые частицы восстановленного титана спекаются в пористую массу, образуя титановую губку. Путем сложных процессов рафинирования и переплава из титановой губки получают чистый титан. Технически чистый титан (ГОСТ 19807-74) содержит 99,2-99,65% титана. Свойства и применение титана. Прочность технически чистого титана зависит от степени его чистоты и соответствует прочности обычных конструкционных сталей. По коррозионной стойкости титан превосходит даже высоколегированные нержавеющие стали. Для получения сплавов титана с заданными механическими свойствами его легируют алюминием, молибденом, хромом и другими элементами. Главное преимущество титана и его сплавов заключается в сочетании высоких механических свойств (σв≥1500 мпа; δ=10-15%) и коррозионной стойкости с малой плотностью. Алюминий повышает жаропрочность и механическую прочность титана. Ванадий, марганец, молибден и хром повышают жаропрочность титановых сплавов. Сплавы хорошо поддаются горячей и холодной обработке давлением, обработке резанием, имеют удовлетворительные литейные свойства, хорошо свариваются в среде инертных газов. Сплавы удовлетворительно работают при температурах до 350-500°С. По технологическому назначению титановые сплавы делят на деформируемые и литейные, а по прочности - на три группы: низкой (σв=300-700 мпа), средней (σв=700-1000 мпа) и высокой (σвболее 1000 мпа) прочности. К первой группе относят сплавы под маркой BT1, ко второй - ВТЗ, ВТ4, ВТ5 и др., к третьей - ВТ6, ВТ14, ВТ15 (после закалки и старения). Для литья применяют сплавы, аналогичные по составу деформируемым сплавам (ВТ5Л, ВТ14Л), а также специальные литейные сплавы. Литейные сплавы имеют более низкие механические свойства, чем соответствующие деформируемые. Титан и его сплавы, обработанные давлением, выпускают в виде прутков, листов и слитков. Титановые сплавы (табл. 13) применяют в авиационной и химической промышленности. Получение магния. Магний - самый легкий из технических цветных металлов, его плотность 1,740 кг/м3, температура плавления 650°С. Технически чистый магний непрочный, малопластичный металл с низкой тепло- и электропроводностью. Для улучшения прочностных свойств в магний добавляют алюминий, кремний, марганец, торий, церий, цинк, цирконий и подвергают термообработке. Для производства магния используют преимущественно карналлит (mgcl2∙ксl∙6Н2О), магнезит (mgco3), доломит (cacо3∙mgcо3) и отходы ряда производств, например титанового. Карналлит подвергают обогащению, в процессе которого отделяют ксl и нерастворимые примеси путем перевода в водный раствор mgcl2 и кcl. После получения в вакуум-кристаллизаторах искусственного карналлита, его обезвоживают и электролитическим путем получают из него магний, который затем подвергают рафинированию. Технически чистый магний (первичный) содержит 99,8-99,9% магния (ГОСТ 804-72). Маркировка и химический состав магниевых сплавов для фасонного литья и слитков, предназначенных для обработки давлением, приведены в ГОСТ 2581-78. Свойства и применение магния. В зависимости от способа получения изделий магниевые сплавы делят на литейные и деформируемые. Литейные магниевые сплавы (ГОСТ 2856-68) применяют для изготовления деталей литьем. Их маркируют буквами МЛ и цифрами, обозначающими порядковый номер сплава, например МЛ5. Отливки из магниевых сплавов иногда подвергают закалке с последующим старением. Некоторые сплавы МЛ применяют для изготовления высоконагруженных деталей в авиационной промышленности: картеры, корпуса приборов, фермы шасси и т. П. Деформируемые магниевые сплавы (ГОСТ 14957-76) предназначены для изготовления полуфабрикатов (листов, прутков, профилей) обработкой давлением. Их маркируют буквами МА и цифрами, обозначающими порядковый номер сплава, например МА5. Сплавы МА применяют для изготовления различных деталей в авиационной промышленности. Ввиду низкой коррозионной стойкости магниевых сплавов изделия и детали из них подвергают оксидированию с последующим нанесением лакокрасочных покрытий.