Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Случайные события.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
30.11 Кб
Скачать
  1. Однофакторный дисперсионный анализ. Многофакторный дисперсионный анализ.

Однофакторный дисперсионный анализ используется в тех случаях, когда есть в распоряжении три или более независимые выборки, полученные из одной генеральной совокупности путем изменения какого-либо независимого фактора, для которого по каким-либо причинам нет количественных измерений.

Для этих выборок предполагают, что они имеют разные выборочные средние и  одинаковые выборочные дисперсии. Поэтому необходимо ответить на вопрос, оказал ли этот фактор существенное влияние на разброс выборочных средних или разброс является следствием случайностей, вызванных небольшими объемами выборок. Другими словами если выборки принадлежат одной и той же генеральной совокупности, то разброс данных между выборками (между группами) должен быть не больше, чем разброс данных внутри этих выборок (внутри групп).

  1. Межгрупповая и внутригрупповая дисперсии. Правила сложения групповых средних и дисперсий.

Внутригрупповой дисперсией называют сумму групповых дисперсий, умноженных на объемы групп и деленную на объем всей совокупности:

Межгрупповой дисперсией называют сумму квадратов отклонений групповых средних от общего среднего, умноженных на объемы групп и деленную на объем всей совокупности:

  1. F-критерий Фишера.

F - критерий Фишера является параметричесикм критерием и используется для сравнения дисперсий двух вариационных рядов.

Если вычисленное значение критерия Fэмп больше критического для определенного уровня значимости и соответствующих чисел степеней свободы для числителя и знаменателя, то дисперсии считаются различными. Иными словами, проверяется гипотеза, состоящая в том, что генеральные дисперсии рассматриваемых совокупностей равны между собой: H0={Dx=Dy}.

Критическое значение критерия Фишера следует определять по специальной таблице, исходя из уровня значимости α и степеней свободы

 Проиллюстрируем применение критерия Фишера на следующем примере. Дисперсия такого показателя, как стрессоустойчивость для учителей составила 6,17 (n1=32), а для менеджеров 4,41 (n2=33). Определим, можно ли считать уровень дисперсий примерно одинаковым для данных выборок на уровне значимости 0,05.

Непараметрические критерии

Непараметрические критерии не содержат расчёта параметров распределения и основаны на оперировании частотами или рангами. Непараметрические критерии, как правило, менее сложны в вычислениях и могут быть измерены в любой шкале, начиная от шкалы наименований.

Критерий Фишера применяется для проверки равенства дисперсий двух выборок. Его относят к критериям рассеяния.

В дисперсионном анализе критерий Фишера позволяет оценивать значимость факторов и их взаимодействия.

Критерий Фишера основан на дополнительных предположениях о независимости и нормальности выборок данных. Перед его применением рекомендуется выполнить проверку нормальности.

  1. Непараметрические критерии (критерий знаков, Вилкоксона, Манна-Уитни).

Непараметрические критерии - это группа статистических критериев, которые не включают в расчёт параметры вероятностного распределения и основаны на оперировании частотами или рангами:Q-критерий Розенбаума;U-критерий Манна-Уитни;Критерий Колмогорова; Критерий Уилкоксона. Q-критерий Розенбаума — простой непараметрический статистический критерий, используемый для оценки различий между двумя выборками по уровню какого-либо признака.

U-критерий Манна — Уитни (англ. Mann — Whitney U-test) — статистический критерий, используемый для оценки различий между двумя независимыми выборками по уровню какого-либо признака, измеренного количественно. Позволяет выявлять различия в значении параметра между малыми выборками.

Т-Критерий Уилкоксона - непараметрический статистический критерий, используемый для проверки различий между двумя выборками парных измерений. Критерий предназначен для сопоставления показателей, измеренных в двух разных условиях на одной и той же выборке испытуемых. Он позволяет установить не только направленность изменений, но и их выраженность, то есть, способен определить, является ли сдвиг показателей в одном направлении более интенсивным, чем в другом .Данный критерий применим в тех случаях, когда признаки измерены, по крайней мере, в порядковой шкале. Это объясняется тем, что разброс значений сдвигов должен быть таким, чтобы появлялась возможность их ранжирования. В случае если сдвиги незначительно отличаются между собой, и принимают какие-то конечные значения, например. +1, -1 и 0, формальных препятствий к применению критерия нет, но, ввиду большого числа одинаковых рангов, ранжирование утрачивает смысл, и те же результаты проще было бы получить с помощью критерия знаков.