
- •1 Вказати загальний розв’язок рівняння ( - довільні функції).
- •18 Розв’язок задачі теплопровідності в стержні має вид:
- •19 Рівняння Лапласа в полярних координатах має вид:
- •20 Розв’язок задачі Діріхле для круга має вид:
- •Рівtym c
- •2 Вказати тип рівняння .
- •3 Вказати тип рівняння .
- •29 Розв’язком рівняння ( ), який задовольняє умовам , є функція:
- •33 Розв’язком рівняння ( ), який задовольняє умовам , є функція:
- •34 Розв’язком рівняння ( ),який задовольняє умовам , є функція:
- •35 Розв’язком рівняння ( ), який задовольняє умовам
- •36 Розв’язком рівняння ( ), який задовольняє умовам , є функція:
- •37 Роз’язком рівняння ( ), який задовольняє умовам , є функція:
- •57 Розв’язком задачі Діріхле для круга ( - радіус круга) є функція:
57 Розв’язком задачі Діріхле для круга ( - радіус круга) є функція:
б)
;
Нехай в площині 0ху є коло радіусом R
з центром на початку координат і на його
окружності задана деяка функція f(),
де
- полярний кут. Потрібно знайти функцію
u(r,),
непреривну в колі, включаючи границю,
задовільняючу всередині кола рівнянню
Лапласа
.
і на колі що приймає задані значення .
.
Формула називається інтегралом Пуассона. Шляхом аналізу цієї формули доводиться, що якщо формула f() неперервна, то функція U(r,), визначена інтегралом задовільняє рівність (1) і при rR буде U(r,)f(), тобто U(r,) являє собою рішення поставленої задачі Діріхле для кола.
;
58
Розв’язком
задачі Діріхле для круга
(
-
радіус круга) є функція: а)
;
Нехай в площині 0ху є коло радіусом R з центром на початку координат і на його окружності задана деяка функція f(), де - полярний кут. Потрібно знайти функцію u(r,), непреривну в колі, включаючи границю, задовільняючу всередині кола рівнянню Лапласа .
і на колі що приймає задані значення .
.
Формула називається інтегралом Пуассона. Шляхом аналізу цієї формули доводиться, що якщо формула f() неперервна, то функція U(r,), визначена інтегралом задовільняє рівність (1) і при rR буде U(r,)f(), тобто U(r,) являє собою рішення поставленої задачі Діріхле для кола.
;
59
Розв’язком
задачі Діріхле для круга
(
-
радіус круга) є функція: г)
;
Нехай в площині 0ху є коло радіусом R з центром на початку координат і на його окружності задана деяка функція f(), де - полярний кут. Потрібно знайти функцію u(r,), непреривну в колі, включаючи границю, задовільняючу всередині кола рівнянню Лапласа .
і на колі що приймає задані значення .
.
Формула називається інтегралом Пуассона. Шляхом аналізу цієї формули доводиться, що якщо формула f() неперервна, то функція U(r,), визначена інтегралом задовільняє рівність (1) і при rR буде U(r,)f(), тобто U(r,) являє собою рішення поставленої задачі Діріхле для кола.
;
60
Розв’язком
задачі Діріхле для круга
(
-
радіус круга) є функція: в)
;
Нехай в площині 0ху є коло радіусом R з центром на початку координат і на його окружності задана деяка функція f(), де - полярний кут. Потрібно знайти функцію u(r,), непреривну в колі, включаючи границю, задовільняючу всередині кола рівнянню Лапласа .
і на колі що приймає задані значення .
.
Формула називається інтегралом Пуассона. Шляхом аналізу цієї формули доводиться, що якщо формула f() неперервна, то функція U(r,), визначена інтегралом задовільняє рівність (1) і при rR буде U(r,)f(), тобто U(r,) являє собою рішення поставленої задачі Діріхле для кола.
;