
- •1. Генетика как наука
- •2. Генетический аппарат прокариотов
- •3. Генетический аппарат вирусов и фагов
- •4.Генетический аппарат эукариотической клетки
- •5.Химический состав, морфология и ультраструктура хромосом на различных стадиях клеточного цикла
- •7.Механизм и энзимология репликации днк.
- •8.Митоз
- •10.Гаметогенез-развитие мужских и женских гамет
- •11. Закономерности моногибридного скрещивания. Законы и правила Менделя. Понятия о генах, аллелях, генотипе и фенотипе.
- •12. Взаимодействие аллельных генов: полное и неполное доминирование, кодоминирование. Примеры.
- •13. Реципрокные, возвратные и анализирующее скрещивания, их значения. Примеры.
- •14. II закон Менделя: закон расщепления гибридов второго поколения и условия его выполнения. Примеры нарушения расщепления.
- •15. Наследование при дигибридном скрещивании. Третий закон Менделя. Цитологические основы независимого наследования признаков.
- •16. Наследование при полигибридных скрещиваниях. Примеры. Комбинативная изменчивость, ее источники и роль в эволюции и селекции.
- •17. Наследование при взаимодействии неаллельных генов: комплементарность и эпистаз.
- •18. Наследование при полимерном взаимодействии генов, кумулятивная и некумулятивная полимерия. Плейотропное действие генов.
- •19. Генетика пола. Типы хромосомного определения пола. Половые признаки. Половой хроматин. Переопределение пола в онтогенезе.
- •20. Наследование признаков, сцепленных с полом.
- •36.Системы скрещивания в селекции растений и животных: инбридинг, линейная селекция, аутбридинг. Гетерозис. Методы отбора.
- •40.Генетические карты хромосом — это схема взаимного расположения и относительных расстояний между генами определенных хромосом, находящихся в одной группе сцепления.
- •41. Цитоплазматическое наследование, его особенности
- •42.Генетика онтогенеза. Регуляция работы генов как механизм дифференциации клеток. Возможные механизмы канцерогенеза.
2. Генетический аппарат прокариотов
Прокариоты – это организмы, в клетках которых отсутствует оформленное ядро. Функции ядра выполняет нуклеоид (то есть «подобный ядру»); в отличие от ядра, нуклеоид не имеет собственной оболочки.
Основу генома прокариот составляют кольцевые молекулы ДНК: прокариотические хромосомы и плазмиды.
Множество молекул ДНК образует две взаимосвязанные подсистемы: хромосомную и плазмидную.
Хромосомная подсистема прокариотического генома
Основу хромосомной подсистемы прокариотического генома составляет прокариотическая (бактериальная) хромосома (генофор), входящая в состав нуклеоида – ядерноподобной структуры. Нуклеоид по морфологии напоминает соцветие цветной капусты и занимает примерно 30% объема цитоплазмы.
Бактериальная хромосома представляет собой кольцевую двуспиральную правозакрученную молекулу ДНК, которая свернута во вторичную спираль. Вторичная структура хромосомы поддерживается с помощью гистоноподобных (основных) белков и РНК. Точка прикрепления бактериальной хромосомы к мезосоме (складке плазмалеммы) является точкой начала репликации ДНК (эта точка носит название сайта OriC). Бактериальная хромосома удваивается перед делением клетки. Репликация ДНК идет в две стороны от сайта OriC и завершается в точке TerC. Молекулы ДНК, способные себя воспроизводить путем репликации, называются репликоны.
Длина прокариотической хромосомы составляет несколько миллионов нуклеотидных пар (мпн); например, минимальная длина ДНК прокариотической хромосомы E. coli штамма MG1655 составляет 4639221 пн (физическая длина около 1,5 мм).
У типичных прокариот в неделящейся клетке имеется одна бактериальная хромосома. Поэтому прокариоты в целом являются гаплоидами (гаплобионтами).
Плазмиды и эписомы - это небольшие фрагменты ДНК, отличающейся от основной массы ДНК. Они часто реплицируются вместе с ДНК хозяина, но не нужны для выживания его клетки.
Сначала было принято различать эписомы и плазмиды: эписомы внедряются в ДНК хозяина, а плазмиды - нет. К эписомам относятся F-факторы и так называемые умеренные фаги. Сейчас обе группы называют одним общим термином "плазмиды".Плазмиды широко распространены в природе, и в последние годы их считают внутриклеточными паразитами или симбионтами, устроенными еще проще, чем вирусы. Вопрос о том, можно ли вирусы считать живыми организмами будет подробно рассмотрен в другой статье. Что касается плазмид, то здесь дело обстоит еще сложнее - ведь они представляют собой только молекулы ДНК.
Плазмиды придают своим клеткам-хозяевам целый ряд особых свойств. Некоторые плазмиды являются "факторами резистенции" (R-плазмиды, или R-факторы: от англ. R = resistance - устойчивость), т.е. факторами, придающими устойчивость к антибиотикам. Примером может служить пенициллиназная плазмида стафилококков, которая трансдуцируется различными бактериофагами. В этой плазмиде содержится ген, кодирующий фермент пенициллиназу, которая разрушает пенициллин и, таким образом, придает устойчивость к пенициллину. Передача и распространение таких факторов среди бактерий (в результате полового размножения) очень мешают врачам. Другие плазмидные гены определяют устойчивость к дезинфицирующим средствам; способствуют таким заболеваниям, как стафилококковая импетиго; помогают молочнокислым бактериям превращать молоко в сыр; придают способность усваивать такие сложные вещества, как углеводороды, что можно использовать для борьбы с загрязнениями океана или для получения кормового белка из нефти.
Деление прокариотических клеток — процесс образования дочерних прокариотических клеток из материнской. Ключевыми событиями клеточного цикла как прокариот, так и эукариот являются репликация ДНК и деление клетки. Отличительной чертой деления прокариотических клеток является непосредственное участие реплицированной ДНК в процессе деления. В подавляющем большинстве случаев прокариотические клетки делятся с образованием двух одинаковых по размеру дочерних клеток, поэтому этот процесс ещё иногда называют бинарным делением. Так как чаще всего прокариотические клетки имеют клеточную стенку, бинарное деление сопровождается образованием септы — перегородки между дочерними клетками, которая затем расслаивается посередине.