Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Генетика.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
508.42 Кб
Скачать

20. Наследование признаков, сцепленных с полом.

Сюда относится те признаки гены которых лежат в половых хромосомах.

Различают 3 типа сцепления с полом:

1 – половое сцепление с полом. Сюда относится те признаки гены которых лежат в Х - хромосоме, т. к. Х - хромосома встречается у обоих полов, то гены лежащие в ней будут проявляться у обоих. Только у гомогаметного пола в генотипе будут находиться 2 аллели этого гена, а гетерогаметный ген будет встречаться в одном экземпляре. Т.к. Х-хромосомы мужского организма наследуется от матери, то наследование таких признаков принято считать и называть крис-крос, т.е. от матери к сыну, от отца к дочери. Н/р: наследование одного из видов гемофилии(ХА-норм, Ха-гемоф.).

2 – сцепление с У-хромосомой. Андрогенный тип. Т.к. У-хромосома есть только у мужского пола, то наследование осуществляется по мужской линии, от отца к сыну (ген гипертрихоза, ген частичной синдактилии).

3 – неполное сцепление с полом. Это такой тип сцепления, при котором гены лежат как в Х- так и в У-хромосоме. Теоритически такого быть не должно т.к. между ними невозможна конъюгация в профазе I деления мейоза, но все же 1 такой ген найден, этот ген геморрагического диатеза – это заболевание встречается как у женского так и мужского пола.

Такие признаки наследуются через поколение от бабушки к внучке, от дедушки к внуку.

21. Третий закон Менделя: разные признаки наследуются независимо друг от друга или свободно комбинируются.

Гаметы у гетерозигот могут образовываться при независимом и сцепленном наследовании признаков.

Для установления того как распологаются гены необходими провести анализ. скрещивание с рец. гомозиготой.

-если в анализ. скрещивании в потомстве 1:1:1:1 то это независимое наследование

-если в анализ. скрещивании 1: 1 то такой характер наследования будет при полном сцеплении генов. Это встречается очень редко, у самцов дрозофил и само тутового шелкопряда.

Явление сцепленного наследования.

Явление сцепленного наследования изучено Т. Морганом, который установил, что материальной основой сцепления является хромосома (хромосомная теория наследственности). Суть сцепленного наследования как нарушение сцепления, происходящего в результате перекреста хромосом, или кроссинговера, необходимо обратить внимание на биологический смысл этого феномена. При перекресте хромосом происходит обмен идентичными участками между гомологичными хромосомами, а значит, возникают новые комбинации генов (как аллельных, так и неаллельных).

Основные положения хромосомной теории наследственности заключаются в следующем:

- гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов каждой из негомологичных хромосом уникален.

- аллельные гены занимают определенные и идентичные локусы гомологичных хромосом.

- в хромосоме гены располагаются в определенной последовательности по ее длине в линейном порядке.

- гены одной хромосомы образуют группу сцепления, благодаря чему имеет место сцепленное наследование некоторых признаков; сила сцепления находится в обратной зависимости от расстояния между генами.

- каждый биологический вид характеризуется специфичным набором хромосом кариотипом.

22. Гипотезы о механизме кроссинговера.

1. Согласно гипотезе, предложенной Ф.Янсенсом и развитой К.Дарлингтоном, в процессе синапсиса гомологичных хромосом в биваленте создается динамическое напряжение, возникающее в связи со спирализацией хромосомных нитей, а также при взаимном обвивании гомологов в биваленте. В силу этого напряжения одна из четырех хроматид рвется. Разрыв, нарушая равновесие в биваленте, приводит к компенсирующему разрыву в строго идентичной точке какой-либо другой хроматиды этого же бивалента. Затем происходит реципрокное воссоединение разорванных концов, приводящее к кроссинговеру. Согласно этой гипотезе хиазмы непосредственно связаны с кроссинговером.

2. По гипотезе К.Сакса хиазмы не являются результатом кроссинговера: сначала образуются хиазмы, а затем происходит обмен. При расхождении хромосом к полюсам вследствие механического напряжения в местах хиазм происходят разрывы и обмен соответствующими участками. После обмена хиазма исчезает.

3. Смысл другой гипотезы, предложенной Д.Беллингом и модернизированной И.Ледербергом, заключается в том, что процесс репликации ДНК может реципрокно переключаться с одной нити на другую; воспроизведение, начавшись на одной матрице, с какой-то точки переключается на матричную нить ДНК.

Типы кроссинговера.

  1. В зависимости от типа клеток, в которых происходит кроссинговер.

- мейотический - происходит в профазу первого деления мейоза, при образовании половых клеток.

- митотический – при делении соматических клеток, главным образом эмбриональных. Приводит к мозаичности в проявлении признаков.

2. В зависимости от молекулярной гомологии участков хромосом, вступающих в кроссинговер.

- обычный (равный) – происходит обмен разными участками хромосом.

- неравный - наблюдается разрыв в нетождественных участках хромосом.

3. В зависимости от количества образованных хиазм и разрывов хромосом с последующих перекомбинацией генов.

-одинарный

-двойной

-множественный

Значение кроссинговера:

- приводит к увеличению комбинативной изменчивости

- приводит к увеличению мутаций.

23. На основании анализа результатов многочисленных эксперементов с дрозофилой Томас Морган сформулировал хромосомную теорию наследственности, сущность которой заключается в следующем:

Материальные носители наследственности – гены находяться в хромосомах, распологаются в них линейно на определенном расстоянии друг от друга.

Гены, расположенные в одной хромосоме, относятся к одной группе сцепления. Число групп сцепления соответствует гаплоидному числу хромосом.

Признаки, гены которых находятьс в одной хромосоме, наследуются сцеплено.

В потомстве гетерозиготных родителей новые сочетания генов, расположенных в дной паре хромосом, могут возникать в результате кроссинговера в процессе мейоза.

Частота кроссинговера, определяемая по проценту кроссоверных особей, зависит от расстояния между генами.

На основании линейного расположения генов в хромосоме и частоты кроссинговера как покозателя расстояния между генами можно построить карты хромосом.

24. Генетическая карта — схема расположения структурных генов и регуляторных элементов в хромосоме.

Первоначально взаимное расположение генов в хромосомах определяли по частоте кроссинговера между ними. Соответствующее генетическое расстояние измеряли в сантиморганах (или сантиморганидах, сМ): 1 сМ соответствует частоте кроссинговера в 1%. При таком методе генетического картирования физическое расстояние между генами нередко отличалось от их генетического расстояния, так как кроссинговер происходит не с одинаковой вероятностью в разных участках хромосом. При современных методах генетического картирования расстояние между генами измеряется в тысячах пар нуклеотидов (т.п.н.) и соответствует физическому.

При создании генетической карты устанавливают последовательности расположения генетических маркеров (в этом качестве использовали различные ДНК полиморфизмы, т.е. наследуемые вариации в структуре ДНК) по длине всех хромосом с определенной плотностью, т.е. на достаточно близком расстоянии друг от друга.

Генетическая карта маркерных последовательностей должна облегчить картирование всех генов человека, особенно генов наследственных болезней, что является одной из основных целей указанной программы. За короткое время было генетически картировано несколько тысяч генов.

Метод составления генетических карт, разработанный на дрозофиле, был перенесен на растения (кукуруза, львиный зев) и животные (мыши).

Составление генетических карт – процедура весьма трудоемкая. Генные структуры хромосом поддаются легкой расшифровке у тех организмов, которые быстро размножаются. Последнее обстоятельство является основной причиной того, что самые подробные карты существуют для дрозофилы, ряда бактерий и бактериофагов, а наименее подробные для растений.

25. Модификационная (фенотипическая) изменчивость — изменения в организме, связанные с изменением фенотипа вследствие влияния окружающей среды и носящие, в большинстве случаев, адаптивный характер. Генотип при этом не изменяется. В целом современное понятие «адаптивные модификации» соответствует понятию «определенной изменчивости», которое ввел в науку Чарльз Дарвин.

Предел проявления модификационной изменчивости организма при неизменном генотипе — норма реакции. Норма реакции обусловлена генотипом и различается у разных особей данного вида. Фактически норма реакции — спектр возможных уровней экспрессии генов, из которого выбирается уровень экспрессии, наиболее подходящий для данных условий окружающей среды. Норма реакции имеет пределы или границы для каждого биологического вида (нижний и верхний) — например, усиленное кормление приведет к увеличению массы животного, однако она будет находиться в пределах нормы реакции, характерной для данного вида или породы. Норма реакции генетически детерминирована и наследуется. Для разных признаков пределы нормы реакции сильно различаются. Например, широкие пределы нормы реакции имеют величина удоя, продуктивность злаков и многие другие количественные признаки), узкие пределы — интенсивность окраски большинства животных и многие другие качественные признаки.

Тем не менее, для некоторых количественных признаков характерна узкая норма реакции (жирность молока, число пальцев на ногах у морских свинок), а для некоторых качественных признаков — широкая (например, сезонные изменения окраски у многих видов животных северных широт). Кроме того, граница между количественными и качественными признаками иногда весьма условна.

Экспрессивность – степень фенотипического проявления аллеля. Например, аллели групп крови АВ0 у человека имеют постоянную экспрессивность (всегда проявляются на 100%), а аллели, определяющие окраску глаз, – изменчивую экспрессивность. Рецессивная мутация, уменьшающая число фасеток глаза у дрозофилы, у разных особей по разному уменьшает число фасеток вплоть до полного их отсутствия.

Пенетрантность – вероятность фенотипического проявления признака при наличии соответствующего гена. Например, пенетрантность врожденного вывиха бедра у человека составляет 25%, т.е. болезнью страдает только 1/4 рецессивных гомозигот. Медико-генетическое значение пенетрантности: здоровый человек, у которого один из родителей страдает заболеванием с неполной пенетрантностью, может иметь непроявляющийся мутантный ген и передать его детям.

26. Мутационная изменчивость

Мутационная изменчивость - возникновение изменений в наследственном материале, в самих молекулах ДНК. Может измениться не только состав ДНК, но и ее количество (количество хромосом). На мутагенный процесс имеют влияние разные факторы внешней и внутренней среды.

Классификация мутаций.

1.По локализации в организме

- соматические (в клетках тела, не наследуются)

- генеративные ( в половых клетках, наследуются)

2. По влиянию на жизнеспособность: вредные, нейтральные, летальные, полезные.

3. по проявлению в гетерозиготе

- рецессивные

- доминантные

4. по характеру изменения генотипа

-Геномные мутации. Этот случай характерен отсутствием хромосомы в генотипе, или присутствием лишней. Возникают они при образовании гамет в мейозе, когда при расхождении обе хромосомы попадают в одну и ту же гамету и, естественно, другая гамета остается без хромосомы.

Три типа геномных мутаций гаплоидия, полиплоидия и анеуплоидия - широко распространенные в животном и растительном мире.

· Гаплоидия - это уменьшение вдвое диплоидного набора хромосом.

· Полиплоидные мутации ведут к изменению хромосом в кариотипе, которое кратно гаплоидному набору хромосом. Увеличение урожайности.

· Анеуплоидные же мутации приводят к изменению числа хромосом в кариотипе, не кратное гаплоидному набору. В результате такой мутации возникают особи с аномальным числом хромосом. Как и триплодия, анеуплодия часто приводит к смерти еще на ранних этапах развития зародыша. Причиной же таких последствий является утрата целой группы сцепления генов в кариотипе. Синдром Дауна, Потау.

Геномные мутации одни из самых страшных. Они ведут к таким заболеваниям, как синдром Дауна (трисомия, возникает с частотой 1 больной на 600 новорожденных), синдром Клайнфельтера и др.

Хромосомные мутации - значительное изменение структуры хромосомы, обычно затрагивающее несколько генов этой хромосомы. Хромосомные мутации приводят к изменению числа, размеров и организации хромосом, поэтому их иногда называют хромосомными перестройками. Для этого типа характерны потери части хромосомы со всеми ее генами. Примером такой хромосомной мутации служит потеря участка в 21 хромосоме человека, что приводит к развитию острого лейкоза. Возможны случаи, когда хромосома теряет свою срединную часть. Такая мутация называется делецией. Делеции могут быть причиной смерти или тяжелого наследственного заболевания. В иных случаях протекают без каких-либо нарушений, естественно, если утеряна часть ДНК, которая не владела информацией о свойствах организма. Кроме потери участка хромосомы, возможны и его удвоения (дупликация). Этот тип не является настолько опасным, как предыдущий. При разрыве хромосомы в двух местах, оторвавшийся участок, может встроиться обратно, повернувшись на 180°, и будет инверсия. Следующий вид хромосомных мутаций - это транслокация. В этом случае часть хромосомы присоединяется к негомологичной хромосоме.

Хромосомные мутации в основном возникают в процессе деления клетки, например при неравном кроссинговере, при котором осуществляется обмен неравными участками.

Генные ( точковые ) мутации затрагивают, как правило, один или несколько нуклеотидов, при этом один нуклеотид может превратиться в другой, может выпасть(делеция), продублироваться, а группа нуклеотидов может развернутся на 180 градусов. Например, широко известен ген человека, ответственный за серповидно – клеточную анемию, который может привести к летальному исходу.

5. По локализации в клетке. Мутации делятся на ядерные и цитоплазматические. Плазматические мутации возникают в результате мутаций в плазмогенах, находящихяс в митохондриях. Полагают, что именно они приводят к мужскому бесплодию. Причем такие мутации в основном наследуются по женской линии.

27. Генные мутации. Механизмы генных мутаций.

По характеру изменений в составе гена различают следующие типы мутаций:

Делеции — утрата сегмента ДНК размером от одного нуклеотида до гена.

Дупликации — удвоение или повторное дублирование сегмента ДНК от одного нуклеотида до целых генов.

Инверсии — поворот на 180° сегмента ДНК размером от двух нуклеотидов до фрагмента, включающего несколько генов.

Инсерции — вставка фрагментов ДНК размером от одного нуклеотида до целого гена.

Трансверсии — замена пуринового основания на пиримидиновое или наоборот в одном из кодонов.

Транзиции — замена одного пуринового основания на другое пуриновое или одного пиримидинового на другое в структуре кодона.

Механизмы генных мутаций.

По последствиям генных мутаций их классифицируют на нейтральные, регуляторные и динамические, а также на миссенс- и нонсенс мутации.

Нейтральная мутации (молчащая мутация) — мутация не имеет фенотипи-ческого выражения (например, в результате вырожденности генетического кода).

Миссенс-мутация — замена нуклеотида в кодирующей части гена — приводит к замене аминокислоты в полипептиде.

Нонсенс-мутация — замена нуклеотида в кодирующей части гена — приводит к образованию кодона-терминатора (стоп-кодона) и прекращению трансляции.

Регуляторная мутация — мутация в 5'- или З'-нетранслируемых областях гена, такая мутация нарушает экспрессию гена.

Динамические мутации — мутации, обусловленные увеличением числа три-нуклеотидных повторов в функционально значимых частях гена. Такие мутации могут привести к торможению или блокаде транскрипции, приобретению белковыми молекулами свойств, нарушающих их нормальный метаболизм.

Множественный аллелизм — это существование в популяции более двух аллелей данного гена. В популяции оказываются не два аллельных гена, а несколько.

Множественный аллелизм определяет в человеческих популяциях фенотипическую гетерогенность. Она, в свою очередь, являет собой одну из основ многообразия генофонда. Множественный аллелизм обусловлен генными мутациями, которые изменяют последовательность в азотистых основаниях ДНК-молекулы на участке, который соответствует определенному гену. Данные мутации могут быть вредными, полезными либо нейтральными. Вредные превращения провоцируют наследственные патологии, с которыми связан множественный аллелизм. Так, например, известна мутация, которая изменяет структуру в одной из цепи белка гемоглобина за счет трансформации кода глутаминовой кислоты в код валина (аминокислоты) в гене на концевом участке. В результате этого перехода развивается такая наследственная патология, как серповидноклеточная анемия.

28. Хромосомные аберрации (хромосомные мутации, хромосомные перестройки) — тип мутаций, которые изменяют структуру хромосом. Классифицируют: делеции (утрата участка хромосомы), инверсии (изменение порядка генов участка хромосомы на обратный), дупликации (повторение участка хромосомы), транслокации (перенос участка хромосомы на другую), а также дицентрические и кольцевые хромосомы. Известны также изохромосомы, несущие два одинаковых плеча. Если перестройка изменяет структуру одной хромосомы, то такую перестройку называют внутрихромосомной (инверсии, делеции, дупликации, кольцевые хромосомы), если же двух разных, то межхромосомной (дупликации, транслокации, дицентрические хромосомы). Хромосомные перестройки подразделяют также на сбалансированные и несбалансированные. Сбалансированные перестройки (инверсии, реципрокные транслокации) не приводят к потере или добавлению генетического материала при формировании, поэтому их носители, как правило, фенотипически нормальны. Несбалансированные перестройки (делеции и дупликации) меняют дозовое соотношение генов, и, как правило, их носительство сопряжено с клиническими отклонениями от нормы.

Возникновение хромосомных аберраций.

Основной предпосылкой для возникновения хромосомных перестроек является появление в клетке двунитевых разрывов ДНК, то есть разрывов обеих нитей спирали ДНК в пределах нескольких п.о. Двунитевые разрывы ДНК возникают в клетке спонтанно или под действием различных мутагенных факторов: физической (ионизирующее излучение), химической или биологической (транспозоны, вирусы) природы. Двунитевые разрывы ДНК возникают запрограммированно во время профазы I мейоза, а также при созревании Т- и B-лимфоцитов во время специфической соматической (V(D)J рекомбинации. Нарушения и ошибки процесса воссоединения двунитевых разрывов ДНК приводят к появлению хромосомных перестроек.

Значение. Хромосомные перестройки играют определенную роль в эволюционном процессе и видообразовании, в нарушении фертильности, в онкологических и врождённых наследственных заболеваниях человека.

29. Геномные мутации связаны с нарушением числа хромосом в кариотипе и могут быть двух видов: полиплоидными и анеуплоидными.

Полиплоидия и анеуплоидия представляют собой результат изменений числа хромосом, которые, согласно традиционной классификации, относят к геномным мутациям, т. е. изменениям генома — гаплоидного набора хромосом с локализованными в них генами.

ПОЛИПЛОИДИЯ

эуплоидия, наследств, изменение, заключающееся в кратном увеличении числа наборов хромосом в клетках организма. Наиб, часто встречается у растений и простейших, а из многоклеточных животных — у дождевых червей. Возникает в резулыате нарушения расхождения хромосом в митозе или мейозе под действием высокой или низкой темп-ры, ионизирующих излучений, химич. веществ (как в природе, так и в эксперименте). При П. наблюдаются отклонения от диплоидного числа хромосом в соматич. клетках и от гаплоидного — в половых; могут возникать клетки, в к-рых каждая хромосома представлена трижды (Зп — триплоиды), четырежды (4п — тетраплоиды), пять раз (5п — пентаплоиды) и т. д.

Анеуплоидия — изменение кариотипа, при котором число хромосом в клетках не кратно гаплоидному набору (n). Отсутствие в хромосомном наборе диплоидного организма одной хромосомы называется моносомией (2n-1); отсутствие двух гомологичных хромосом — нуллисомией (2n-2); наличие дополнительной хромосомы называется трисомией (2n+1) . Анеуплоидия возникает в результате нарушения сегрегации хромосом в митозе или мейозе. Анеуплоидия вызывает у человека некоторые наследственные синдромы. Анеуплоидия по аутосомам нарушает нормальное эмбриональное развитие и является одной из основных причин спонтанных абортов[1]:1. Анеуплоидия характерна для опухолевых клеток, особенно для клеток сóлидных опухолей[2]. Патологический фенотип при анеуплоидии формируется из-за нарушения дозового баланса генов, при моносомии дополнительный негативный вклад оказывает гемизиготное состояние генов моносомной хромосомы

Механизм возникновения геномных мутаций связан с патологией нарушения нормального расхождения хромосом в мейозе (анафаза- и анафаза-II), в результате чего образуются аномальные гаметы (по количеству хромосом), после оплодотворения которых возникают гетероплоидяые зиготы.

30. Спонтанный мутагенез, т.е. процесс возникновения мутаций в организме в отсутствие намеренного воздействия мутагенами, представляет собой конечный результат суммарного воздействия различных факторов, приводящих к повреждениям генетических структур в процессе жизнедеятельности организма.

Причины возникновения спонтанных мутаций можно разделить на:

• экзогенные (естественная радиация, экстремальные температуры и др.);

• эндогенные (спонтанно возникающие в организме химические соединения-метаболиты, вызывающие мутагенный эффект; ошибки репликации, репарации, рекомбинации; действие генов-мутаторов и антимутаторои; транспозиция мобильных генетических элементов и др.).

Гомологические ряды в наследственной изменчивости — понятие, введенное Н. И. Вавиловым[1] при исследовании параллелизмов в явлениях наследственной изменчивости по аналогии с гомологическими рядами органических соединений.

Закон. Генетически близкие виды и роды характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов.

Закономерности в полиморфизме у растений, установленные путем детального изучения изменчивости различных родов и семейств, можно условно до некоторой степени сравнить с гомологическими рядами органической химии, например с углеводородами (CH4, C2H6, C3H8…).[2]

Суть явления состоит в том, что при изучении наследственной изменчивости у близких групп растений были обнаружены сходные аллельные формы, которые повторялись у разных видов (например, узлы соломины злаков с антоциановой окраской или без, колосья с остью или без и т. п.). Наличие такой повторяемости давало возможность предсказывать наличие ещё не обнаруженных аллелей, важных с точки зрения селекционной работы. Поиск растений с такими аллелями проводился в экспедициях в предполагаемые центры происхождения культурных растений.

Н. И. Вавилов рассматривал сформулированный им закон как вклад в популярные в то время представления о закономерном характере изменчивости, лежащей в основе эволюционного процесса (например, теория номогенеза Л. С. Берга). Он полагал, что закономерно повторяющиеся в разных группах наследственные вариации лежат в основе эволюционных параллелизмов и явления мимикрии.

Искусственный (индуцированный) мутагенез.

Искусственно полученные мутантные формы являются ценным материалом для селекции, поскольку в контролируемых условиях можно получить мутации, встречающиеся в природе очень редко или вообще не обнаруживаемые. Мутагенез широко применяется в селекции микроорганизмов и растений.

Для получения индуцированных мутаций у растений используют самые различные мутагены. Дозу этих мутагенов подбирают таким образом, чтобы погибало не более 30…50% обработанных объектов.

Обработке подвергают пыльцу, семена, проростки, почки, черенки, луковицы, клубни и другие части растений. Растения, выращенные из обработанных семян (почек, черенков и т.д.) обозначаются символом M1 (первое мутантное поколение). В M1 отбор вести трудно, поскольку большая часть мутаций рецессивна и не проявляется в фенотипе. Кроме того, наряду с мутациями часто встречаются и ненаследуемые изменения: фенокопии, тераты, морфозы.

Поэтому выделение мутаций начинают в M2 (втором мутантном поколении), когда проявляется хотя бы часть рецессивных мутаций, а вероятность сохранения ненаследственных изменений снижается. Обычно отбор продолжается в течение 2…3 поколений, хотя в некоторых случаях для выбраковки ненаследуемых изменений требуется до 5…7 поколений.

Полученные мутантные формы или непосредственно дают начало новому сорту (например, карликовые томаты с желтыми или оранжевыми плодами) или используются в дальнейшей селекционной работе.

Однако применение индуцированных мутаций в селекции все же ограничено, поскольку мутации приводят к разрушению исторически сложившихся генетических комплексов. У животных мутации практически всегда приводят к снижению жизнеспособности и/или бесплодию. Поэтому в селекции стараются использовать уже известные мутации, которые прошли испытание естественным отбором.

31. Мутации (от латинского mutatio - изменение) - внезапные, возникающие естественно или вызываемые искусственно изменения наследственных свойств организма в результате перестроек и нарушений в генетическом материале организма - хромосомах и генах. Факторы, способные вызывать мутации, называются мутагенными. Их воздействие на живые организмы приводит к появлению мутаций с частотой, превышающей уровень спонтанных мутаций. Различают следующие мутагенные факторы:  физические (к ним относятся все виды ионизирующих излучений - гамма- и рентгеновские лучи, протоны, нейтроны и др., ультрафиолетовое излучение, высокие и низкие температуры); химические (многие алкилирующие соединения, аналоги азотистых оснований нуклеиновых кислот, некоторые биополимеры - чужеродные ДНК или РНК, алкалоиды и многие другие);  биологические (вирусы, бактерии).  Часто мутагенные факторы называют мутагенами (от мутации и греческого genes - рождающий, рождённый). Мутагены, увеличивающие частоту мутаций в сотни раз (нитропроизводные мочевины) называются супермутагенами.  Процесс образования мутаций с помощью физических или химических мутагенов называется мутагенезом. Последний является одним из важнейших приёмов экспериментальной генетики. Часто термины "мутагенез" и "мутационный процесс" отождествляются, что не оправдано, т.к. мутационный процесс - это многоэтапный процесс возникновения спонтанных или индуцированных мутаций, а мутагенез - это процесс индукции мутаций.  Радиоактивным мутагенезом начали заниматься в 20-х годах нашего столетия. В 1925г. советские учёные Г.С. Филиппов и Г.А. Надсон впервые в истории генетики применили рентгеновские лучи для получения мутаций у дрожжей. Через год американский исследователь Г. Меилер (впоследствии дважды лауреат Нобелевской премии) применил тот же мутаген к мушке дрозофиле. Химический мутагенез впервые целенаправленно начал изучать В.В. Сахаров в 1931г. на дрозофиле при воздействии на её яйца йодом.  Мутации называют прямыми, если их проявление приводит к отклонению признаков от так называемого дикого типа, наиболее распространённого в природе, и обратными (реверсиями), если их проявление приводит к полному или частичному восстановлению дикого типа. 

Генетические последствия загрязнения окружающей среды

Загрязнение гидросферы

происходит прежде всего в результанте сброса в реки, озера и моря промышленных, сельскохозяйственных и бытовых сточных вод.Согласно расчетам ученых, в конце XX в. для разбавления сточных вод может потребоваться 25 тыс. км пресной воды, или практически все реально доступные ресурсы такого стока! Нетрудно догадаться, что именно в этом, а не столько в росте непосредственного водозабора главная причинна обострения проблемы пресной воды. К числу сильно загрязненных относятся многие. Растет загрязнение мирового океана, при этом наиболее загрязнены внутренние моря — Средиземное, Северное, Балтийской, Внутреннее Японское, Яванское, а также Бискайский, Персидский и Мексиканский заливы.

Загрязнение атмосферы

происходит в результате работы промышленности, транспорта и т.д., которые в совокупности ежегодно выбрасывают «на ветер» более 20 млрд. т. твердых и газообразных частиц. Основными загрязнителями атмосферы являются окись углерода и сернистый газ.

Проблема радиоактивного загрязнения биосферы

возникла в 1945 г. После взрыва атомных бомб, сброшенных на японские города. Испытания ядерного оружия, производимые до 1962г. в атмосфере, вызвали глобальное радиоактивное загрязнение. При взрыве атомных бомб возникает очень сильное ионизирующее излучение, радиоактивные частицы рассеиваются на большие расстояния, заражая почву, водоемы, живые организмы. Многие радиоактивные изотопы имеют длительный период полураспада, оставаясь опасными в течении всего времени своего существования. Все эти изотопы включаются в круговорот веществ, попадают в живые организмы и оказывают губительное действие на клетки. Кроме радиоактивного заражения, у испытаний и тем более применений ядерного оружия в военных целях есть еще одна отрицательная сторона. При ядерном взрыве в атмосферу поднимается огромное количество пыли. Эта пыль в течении длительного времени может задерживать солнечную радиацию. В результате этого может произойти похолодание, которое приведет к гибели все живое на земле.

32. Микроорганизмы объекты молекулярной генетики

Генетика микроорганизмов

раздел общей генетики в котором объектом исследования служат бактерии, микроскопические грибы, актинофаги, вирусы животных и растений, бактериофаги и др. микроорганизмы. До 40-х гг. 20 в. считалось, что, поскольку у микроорганизмов нет ядерного аппарата и мейоза, на них не распространяются Менделя законы и Хромосомная теория наследственности. С начала 40-х гг. микроорганизмы становятся объектом интенсивных генетических исследований. Именно на них были решены многие кардинальные вопросы современные генетики. Так, первое указание на то, что материальным носителем наследственности служит Дезоксирибонуклеиновая кислота (ДНК), было получено в опытах на пневмококках (американские генетики О. Т. Эйвери, К. Мак-Леод и М. Маккарти). Генетические исследования микроорганизмов особенно интенсивно стали развиваться после того, как американские генетики С. Лурия М. Дельбрюк показали на кишечной палочке (Escherichia coli), что и бактерии подчиняются мутационным закономерностям . Ранее существовавшее представление об адекватной, адаптивной изменчивости у бактерий возникло вследствие методической ошибки, заключавшейся в изучении культуры как единицы изменчивости. Был предложен новый принцип изучения изменчивости у бактерий — клональный анализ, т. е. изучение потомства одной клетки — родоначальницы Клона. Важной вехой в развитии Г. м. явился разработанный американскими генетиками Дж. и Э. Ледербергами метод реплик, или отпечатков, позволивший доказать, что мутации возникают у бактерий независимо от условий культивирования, и, кроме того, значительно упростивший приёмы отбора вариантов микроорганизмов с желаемыми свойствами. Оказалось, что в больших популяциях бактериальных клеток мутации возникают спонтанно. В 1946 был открыт половой процесс у бактерий (Конъюгация), что позволило применить для их исследованияГенетический анализ. В результате установлены наличие у бактерий рекомбинации , существование у них генетических групп сцепления и построены генетические карты их хромосом. Почти одновременно был открыт парасексуальный процесс грибов (Г. Понтекорво, Великобритания), что расширило возможности генетического анализа грибов, не имеющих полового цикла размножения. Вскоре в генетические исследования были вовлечены Бактериофаги и др. Вирусы (в частности, вирус табачной мозаики — ВТМ). Был открыт эффект переноса генетической информации от одной бактериальной клетки к другой при посредстве бактериофага — генетической Трансдукция, что положило начало изучению генетических взаимоотношений в системе «фаг — бактерия» (Дж. Ледерберг, Н. Зиндер, США). Вслед за тем была обнаружена рекомбинация у фагов (А. Херши и М. Дельбрюк, США). Если использование бактерий в качестве объекта генетических исследований резко повысило разрешающую способность генетическиого анализа, то благодаря фагам удалось перейти к изучению явлений наследственности на молекулярном уровне. Большое значение имели исследования ВТМ (немецкие генетики Г. Шустер и А. Гирер), позволившие вызвать генетический эффект в опытах с чистой рибонуклеиновой кислотой (РНК), которая сохраняла инфекционность и при нанесении на листья табака вызывала в клетках образование полноценных частиц ВТМ.

Трансформация бактерий. (В 1928 г впервые получили доказательство возможности передачи наследственных задатков от одной бактерии к другой. Вводили мышам вирулентный капсульный и авирулентный бескапсульный штаммы пневмококков. При введении вирулентного штамма мыши заболели пневмонией и погибли. При введении авирулентного штамма – живые. При введении вирулентного капсульного штамма, убитого нагреванием, мыши также не погибали. Ввели смесь живой культуры авирулентного бескапсульного штамма со штаммом убитого нагреванием вирулентного капсульного – мыши заболели пневмонией и погибли. Из крови погибших животных были выделены бактерии, кот обладали вирулентностью и были способны образовать капсулу. Живые бактерии авирулентного бескапсульного штамма трансформировались – преобрели свойства убитых болезнетворных бактерий. Трансформирующий фактор – ДНК.). 2) Размножение вирусов. (Вирусы репродуцируются только внутри клетки, какого – то организма и используют для этого её ферментные системы и другие необходимые компоненты. Круг хозяев для определённого вируса может быть ограничен. Вирусы могут инфицировать одноклеточные микроорганизмы – микоплазмы, бактерии и водоросли, а также клетки высших растений и животных.)

Трансдукцией называют передачу ДНК от клетки-донора клетке-реци­пиенту при участии бактериофагов. Обычно при этом фаг переносит лишь небольшой фрагмент ДНК хозяина. Различают два вида транс-дукции: неспецифическую (общую), при которой может быть перенесен любой фрагмент ДНК хозяина, и специфическую, затрагивающую лишь строго определенные фрагменты ДНК. При неспецифической трансдук-ции ДНК клетки-хозяина включается в частицу фага либо дополнитель­но к его собственному геному, либо вместо него, тогда как при специ-фической трансдукции некоторые гены фага замещаются генами хозяина. В обоих случаях трансдуцирующие фаги, как правило, де­фектны - например, они часто теряют способность лизировать клетку-хозяина. Передача признаков путем трансдукции была обнаружена у многих бактерий, в том числе у видов Salmonella, Escherichia, Shigella, Bacillus, Pseudomonas,Staphylococcus, Vibrio и Rhizobium. Но не все фаги могут осуществлять трансдукцию, и не во все бактерии таким путем может быть перенесена ДНК.

В 1952 г. Альфред Херши и Марта Чейз провели блестящий эксперимент, доказав, что наследственным материалом бактериофага T2 является ни что иное, как ДНК.

Бактериофаг T2 – один из наиболее изученных фагов кишечной палочки. Его ДНК заключена в белковую оболочку, образующую головку вирусной частицы. В состав белков вирусной оболочки входят две аминокислоты (метионин и цистеин), содержащие серу, которая отсутствует в ДНК. А вот 99 % всего фосфора бактериофага T2 заключено именно в молекуле ДНК.

Херши и Чейз размножали фага T2 на бактериях Ecoli, которые культивировались на питательной среде, содержащей радиоактивные изотопы 35S и 32P. Таким образом, белковая оболочка фага метилась изотопом 35S, а ДНК фага – изотопом 32P. Это позволило проследить пути белка и ДНК при инфицировании клеток Ecoli. Херши и Чейз готовили суспензию фаговых частиц, а затем смешивали ее с культурой живых бактерий в полужидком агаре, содержащем сульфат кальция (CaSO4) с изотопом 35S и диводородфосфат калия (KH2PO4) с изотопом 32P. Полученная смесь выливалась в чашку Петри с твердой питательной средой, на которой она застывала. После инкубации бактерии размножались, образуя в чашке Петри сплошной слой клеток (т. н. газон), хорошо заметный невооруженным глазом. В местах, куда попали частицы фага, образовались небольшие проплешины, или бляшки. Их количество соответствовало количеству фаговых частиц, изначально попавших в бактериальную культуру. После этого, Херши и Чейз заражали фагами, помеченными изотопами 35S и 32P, свежую бактериальную культуру, содержащуюся на агаре без радиоактивных меток. Годом раньше Андерсон исследовал процесс заражения клетки фагами под электронным микроскопом, и показал, что фаги прикрепляются к клетке, и если помешать фагам прикрепиться, заражения не будет. Херши и Чейз предположили, что белковая оболочка фага остается вне клетки, а внутрь клетки проникает ДНК. Действительно, фаговые частицы осаждались при центрифугировании вместе с бактериями, это подтверждало данные Андерсона о прикреплении фагов к бактериям. Херши и Чейз проверили гипотезу о том, что пустая белковая оболочка остается снаружи клетки. Для этого они перемешивали взятые из культуры пробы на магнитной мешалке, после чего центрифугировали их. Оказалось, что вскоре после инфицирования бактериальной культуры бóльшую часть белка фага, помеченного 35S, можно было таким способом отделить от бактериальных клеток. В образовавшемся осадке и фильтрате разделяли серу и фосфор и измеряли радиоактивность. Выяснилось, что фильтрате в большом количестве содержатся изотопы серы 35S, и в более чем вдвое меньше изотопов фосфора 32P. Напротив, в осадке содержался почти исключительно изотоп фосфора 32P

33.Впервые исследование генетической структуры популяции было предпринято В.Иоганнсеном в 1903 г. В качестве объектов исследования были выбраны популяции самоопыляющихся растений. Исследуя в течение нескольких поколений массу семян у фасоли, он обнаружил, что у самоопылителей популяция состоит из генотипически разнородных групп, так называемых чистых линий, представленных гомозиготными особями. Причем из поколения в поколение в такой популяции сохраняется равное соотношение гомозиготных доминантных и гомозиготных рецессивных генотипов. Их частота в каждом поколении увеличивается, в то время как частота гетерозиготных генотипов будет уменьшаться. Таким образом, в популяциях самоопыляющихся растений наблюдается процесс гомозиготизации, или разложения на линии с различными генотипами.

Большинство растений и животных в популяциях размножаются половым путем при свободном скрещивании, обеспечивающем равновероятную встречаемость гамет. Равновероятную встречаемость гамет при свободном скрещивании называют панмиксией, а такую популяцию — панмиктической. Закон Харди – Вайнберга для панмиктической популяции. Панмиктической или идеальной популяцией называется большая по численности популяция, в которой происходит спаривание любых животных, независимо от их генотипа, и на которую не действуют факторы, способные нарушить её равновесие. Харди и Вайнбергом независимо друг от друга был проведён математический анализ распределения генов и генотипов такой популяции. Фактором, характеризующим генетическое состояние популяции, является частота несущих определенные признаки генов в ее генофонде. В зависимости от частот отдельных генов в популяции складывается соотношение генотипов и фенотипов. Под частотой генов понимают долю каждого аллеля, когда сумма всех имеющихся в популяции генов этого локуса приравнена к единице – закон Харди-Вейнберга. Механизм, приводящий популяцию в такое состояние, реализуется за счет панмиксии – свободного (случайного) скрещивания ее членов между собой, отсутствия отбора и подбора. В чистопородном собаководстве панмиксия не встречается. Закон Харди-Вайнберга может проявляться в чистом виде в следующих случаях: 1) если популяция достаточно многочисленна; 2) если в ней происходит свободное спаривание животных; 3)если нет выбраковки и введения новых животных (ввоза); 4) не наблюдается мутаций, миграций и случайного дрейфа генов. Для характеристики популяции в случае полигенно-обусловленного признака ее разбивают на классы или группы по степени выраженности признака. Чем большее число генов влияет на изучаемый признак, тем меньше различие между отдельными классами,

34. Мутации (от лат. mutatio - изменение), внезапные (скачкообразные) естественные или вызванные искусственно наследуемые изменения генетического материала (генома), приводящие к изменению тех или иных признаков организма. Различают генеративные мутации, возникающие в половых клетках и передающиеся по наследству, и соматические мутации, образующиеся в клетках, не участвующих в репродукции (соматических клетках). Соматические мутации приводят к возникновению генетических мозаик, т.е. к изменению какой-то части организма, развивающейся из мутантной клеткиИзменение генома клетки могут осуществляться тремя путями: в результате изменения числа хромосом, числа и порядка расположения генов или из-за изменения индивидуальных генов. При изменении числа хромосом (так называемые геномные мутации) может происходить утрата или приобретение одной или нескольких хромосом (анеуплоидия), либо меняться число наборов хромосом (полиплоидия). Изменение расположения генов в хромосомах (так называемые хромосомные мутации ) происходит в результате дупликации (повторения) гена, инверсии (переворота одного или несколько генов на 180°), транслокации, или транспозиции (переносе участка хромосомы

Дрейф явление ненаправленного изменения частот аллельных вариантов генов в популяции, обусловленное случайными статистическими причинами.

Один из механизмов дрейфа генов заключается в следующем. В процессе размножения в популяции образуется большое число половых клеток — гамет. Большая часть этих гамет не формирует зигот. Тогда новое поколение в популяции формируется из выборки гамет, которым удалось образовать зиготы. При этом возможно смещение частот аллелей относительно предыдущего поколения.

Изоля́ция (в генетике популяций) — исключение или затруднение свободного скрещивания между особями одного вида. Изоляция является элементарным эволюционным фактором, действующим на микроэволюционном уровне, и приводит к видообразованию.

Виды

Географическая изоляция — обособление определенной популяции от других популяций того же вида каким-либо труднопреодолимым географическим препятствием. Репродуктивная (биологическая) изоляция приводит к нарушению свободного скрещивания или образованию стерильного потомства. Классифицируют экологическую, этологическую, временную, анатомо-морфо-физиологическую и генетическую репродуктивную изоляцию. При этологическом характере репродуктивной изоляции для особей разных популяций снижается вероятность оплодотворения ввиду различий в образе жизни и поведения,

Миграция животных — передвижение животных организмов, вызванное изменением условий существования или в связи с прохождением цикла развития В результате обмена мигрантами между двумя соседними популяциями, отличающимися по генетическому составу, частоты аллелей в каждой из них меняются из поколения в поколение. Эти изменения тем более значительны, чем больше различия между популяциями в частотах аллелей и интенсивнее миграция. Поскольку мы определили эволюцию как изменение частот аллелей в популяциях, мы можем рассматривать миграцию как фактор эволюции.

Эволюционным последствием миграции и обмена генами является нивелировка генетических различий между локальными популяциями. Таким образом, миграция как фактор эволюции, противодействует таким дифференцирующим популяции факторам – отбору, дрейфу генов и мутационному процессу.

Естественный отбор — процесс, посредством которого в популяции увеличивается число особей, обладающих максимальной приспособленностью (наиболее благоприятными признаками), в то время как количество особей с неблагоприятными признаками уменьшается.

1. Направленный отбор — изменения среднего значения признака в течение долгого времени, например увеличение размеров тела;

2. Дизруптивный отбор — отбор на крайние значения признака и против средних значений, например, большие и маленькие размеры тела;

3. Стабилизирующий отбор — отбор против крайних значений признака, что приводит к уменьшению дисперсии признака.

35. Генетические основы селекции. Исходный материал селекции. Центры происхождения культурных растений по Н. И. Вавилову. Селекция - это наука о методах создания высокопродуктивных сортов растений, пород животных и штаммов микроорганизмов. Современная селекция - это обширная область человеческой деятельности, которая представляет собой сплав различных отраслей науки, производства сельскохозяйственной продукции и ее комплексной переработки. В ходе селекции происходят устойчивые наследственные преобразования различных групп организмов. По образному выражению Н.И. Вавилова, «…селекция представляет собой эволюцию, направляемую волей человека». Известно, что достижения селекции широко использовал Ч. Дарвин при обосновании основных положений эволюционной теории.Современная селекция базируется на достижениях генетики и является основой эффективного высокопродуктивного сельского хозяйства и биотехнологии.

Задачи современной селекции

- Создание новых и совершенствование старых сортов, пород и штаммов с хозяйственно-полезными признаками.

- Создание технологичных высокопродуктивных биологических систем, максимально использующих сырьевые и энергетические ресурсы планеты.

- Повышение продуктивности пород, сортов и штаммов с единицы площади за единицу времени.

- Повышение потребительских качеств продукции.

- Уменьшение доли побочных продуктов и их комплексная переработка.

- Уменьшение доли потерь от вредителей и болезней.

Учение Н.И. Вавилова о центрах происхождения культурных растений. Учение об исходном материале является основой современной селекции. Исходный материал служит источником наследственной изменчивости - основы для искусственного отбора. Н.И. Вавилов установил, что на Земле существуют районы с особенно высоким уровнем генетического разнообразия культурных растений, и выделил основные центры происхождения культурных растений (первоначально Н.И. Вавилов выделил 8 центров, но затем сократил их число до 7). Для каждого центра установлены характерные для него важнейшие сельскохозяйственные культуры.

1. Тропический центр - включает территории тропической Индии, Индокитая, Южного Китая и островов Юго-Восточной Азии.

Это родина таких растений, как рис, сахарный тростник, чай, лимон, апельсин, банан, баклажан, а также большого количества тропических плодовых и овощных культур.

2. Восточноазиатский центр - включает умеренные и субтропические части Центрального и Восточного Китая, Корею, Японию и большую часть о. Тайвань. На этой территории живет примерно также около одной четверти населения Земли. Около 20% всей мировой культурной флоры ведет начало из Восточной Азии. Это родина таких растений, как соя, просо, хурма, многих других овощных и плодовых культур.

3. Юго-западноазиатский центр - включает территории внутренней нагорной Малой Азии (Анатолии), Ирана, Афганистана, Средней Азии и Северо-Западной Индии. Сюда же примыкает Кавказ, культурная флора которого, как показали исследования, генетически связана с Передней Азией. Родина мягких пшениц, ржи, овса, ячменя, гороха, дыни.

4. Средиземноморский центр - включает страны, расположенные по берегам Средиземного моря. Этот замечательный географический центр, характеризующийся в прошлом величайшими древнейшими цивилизациями, дал начало приблизительно около 10% видов культурных растений. Среди них такие, как твердые пшеницы, капуста, свекла, морковь, лен, виноград, маслина, множество других овощных и кормовых культур.

5. Абиссинский центр. Общее число видов культурных растений, связанных по своему происхождению с Абиссинией, не превышает 4% мировой культурной флоры. Абиссиния характеризуется рядом эндемичных видов и даже родов культурных растений. Среди них такие, как кофейное дерево, арбуз, хлебный злак тэфф (Eragrostis abyssinica), своеобразное масличное растение нуг (Guizolia ahyssinica), особый вид банана.

. Центральноамериканский центр, охватывающий обширную территорию Северной Америки, включая Южную Мексику. В этом центре можно выделить три очага:

Из Центральноамериканского центра ведет начало около 8% различных возделываемых растений, таких, как кукуруза, подсолнечник, американские длинноволокнистые хлопчатники, какао (шоколадное дерево), ряд видов фасоли, тыквенных, многих плодовых (гвайява, аноны и авокадо).

7. Андийский центр, в пределах Южной Америки, приуроченный к Андийскому хребту. Это родина картофеля, томата. Отсюда ведут начало хинное дерево и кокаиновый куст.

Как видно из перечня географических центров, начальное введение в культуру подавляющего числа возделываемых растений связано не только с флористическими областями, отличающимися богатой флорой, но и с древнейшими цивилизациями. Лишь сравнительно немногие растения введены в прошлом в культуру из дикой флоры вне перечисленных основных географических центров.