Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Импульсные и непрерывные электрические сигналы....docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
69.2 Кб
Скачать
  1. Импульсные и непрерывные электрические сигналы. Характеристики импульсных

непрерывных электрических сигналов

Электрические импульсы, генерируемые с определённой частотой (тактовой частотой), управляют всей работой компьютерного процессора, побуждая его совершать ряд последовательных операций по обработке информации. Широко известный кардиостимулятор представляет собой генератор электрических импульсов, заставляющих сокращаться сердечную мышцу человека, у которого естественный механизм образования подобных импульсов нарушен. Электрические импульсы, возникающие в результате природных или техногенных процессов, могут приводить к нежелательным результатам. Примером таких импульсов являются разряд молнии или скачок (импульс) напряжения в электрической сети из-за резкой смены электрической нагрузки.

Электрические импульсы различаются по форме (виду зависимости тока или напряжения от времени) и количественным характеристикам (амплитуде, длительности, мощности и др.). Электрические импульсы постоянного тока или напряжения (однополярные), не содержащие высокочастотных колебаний, называются видеоимпульсами. Электрические импульсы, представляющие собой ограниченные во времени высоко – или сверхвысокочастотные электромагнитные колебания, огибающая которых имеет форму видеоимпульса, называются радиоимпульсами. По характеру изменения во времени различают видеоимпульсы прямоугольной, пилообразной, экспоненциальной, колоколообразной и других форм. Наиболее широко используются прямоугольные видеоимпульсы, на основе которых формируются синхронизирующие, управляющие и информационные сигналы в вычислительной технике, радиолокации, телевидении и др. Параметры импульсных сигналов, используемых в технике, зависят от конкретного назначения применяемой аппаратуры; напр., мощность импульса может быть от 1 мкВт (в телемеханике) до нескольких мегаватт (в радиолокации); длительность – от 0.1–1 с (в автоматике) до 0.1 нс (в вычислительной технике).

Непрерывные сигналы описываются непрерывными функциями времени. Мгновенные значения таких сигналов изменяются во времени плавно, без резких скачков (разрывов). Пример временной диаграммы непрерывного сигнала приведен на рис.5.2а. Сигналы, временные диаграммы которых изображены на рис.5.1, не являются непрерывными, поскольку их мгновенные значения в некоторые моменты времени изменяются скачками. Многие реальные сигналы являются непрерывными. К таковым можно отнести, например, электрические сигналы при передаче речи, музыки, многих изображений.

  1. Ключевые схемы. Инвертор. Схема И, ИЛИ

Инвертор (лат. inverto — поворачивать, переворачивать) — элемент вычислительной машины, осуществляющий определённые преобразования сигнала. Различают два основных типа инверторов: аналоговые и цифровые.

  1. Представление информации в ЦВМ. Насыщенный ключ

Понятие информации является центральным в информатике. Информация вместе с веществом и энергией есть важнейшие сущности нашего мира. Информация – это не только сведения из книг, радио- или телепередач, это сведения, которые хранятся в структуре сложнейшей биологической молекулы, сведения, который мы "считываем" с картины в музее или "вдыхаем" в лесу с ароматом цветов и т.д. Очень важно установить способ представления той или иной информации. Только представив информацию в специальном виде, её можно передавать и обрабатывать с помощью компьютера. Для этого надо принять некоторые соглашения о соответствии значения информации её представлению.

В компьютерах используются физические устройства, которые способны находиться только в двух состояниях: "включено" и "выключено". Первое из состояний принято обозначать цифрой 1, а второе – цифрой 0. Таким образом, персональный компьютер устроен так, что он может "понимать" только две цифры: 0 и 1.

С помощью различных комбинаций 0 и 1 можно представить и числа, и тексты, и любую другую информацию. Представление чисел в виде комбинаций 0 и 1 называется двоичным представлением, а цифры 0 и 1 – двоичными цифрами. Система представления чисел двоичными цифрами называется двоичной системой счисления.

В общем случае позиционной системой счисления называется позиционное представление чисел, в котором последовательные цифровые разряды являются целыми степенями целого числа, называемого основанием системы. Например, в десятичной системе счисления, основанием которой является число 10, каждый следующий старший разряд в 10 раз больше предыдущего.

Целое число М в позиционной системе счисления с основанием n записывается в виде M=ak ak-1…a1 a0 , где ak ak-1…a1 a0 – цифры из интервала от 0 до n-1. Развёрнутая форма записи целого числа имеет вид:

Например, в десятичном числе 19: a1=1 и a0=9. Десятичное число 19 будет иметь представление: 1*10+9=19.

4. Статистические характеристики ключа

5. Элементарные логические схемы. Изображение логических схем

6. Алгебра логики при синтезе комбинационных схем

7. Минимизация функции алгебры логики

8. Карты Карно

9. Комбинационные схемы. Синтез комбинационных схем

10. Временные диаграммы

11. Логические элементы ЦВМ. Элементы дидно-транзисторной логики(ДТЛ)

12. Параметры микросхем

13. Транзисторно-транзисторная логика(ТТЛ)

Элементы транзисторно-транзисторной логики (ТТЛ) составляют базу микросхем среднего и высокого быстродействия. Разработано и используется несколько вариантов схем, имеющих различные параметры.

Рисунок 11 Логические элементы И-НЕ с простым а) и сложным б) инвертором

ТТЛ элемент И-НЕ с простым инвертором

В состав такого элемента входит многоэмиттерный транзистор VT1 (рисунок 11,а), осуществляющий логическую операцию И и транзистор VT2, реализующий операцию НЕ.

Многоэмиттерный транзистор (МЭТ) является основой ТТЛ. При наличии на входах схемы т.е. эмиттерах МЭТ сигнала U0=UКЭ.нас эмиттерные переходы смещены в прямом направлении и через VT1 протекает значительный базовый ток IБ1=(E–UБЭ.нас–UКЭ.нас)/RБ, достаточный для того, чтобы транзистор находился

в режиме насыщения. При этом напряжение коллектор-эмиттер VT1 UКЭ.нас=0,2 В. Напряжение на базе транзистора VT2, равное U0+UКЭ.нас=2UКЭ.нас<UБЭ.нас и транзистор VT2 закрыт. Напряжение на выходе схемы соответствует уровню логической «1». В таком состоянии схема будет находиться, пока хотя бы на одном из входов сигнал равен U0.

Если входное напряжение повышать от уровня U0 на всех входах одновременно, или на одном из входов при условии, что на остальные входы подан сигнал логической «1», то входное напряжение на базе повышается и при Uб=Uвх+UКЭ.нас=UБЭ.нас и транзистор VT2 откроется. В результате увеличится ток базы VT2, который будет протекать от источника питания через резистор Rб и коллекторный переход VT1, и транзистор VT2 перейдёт в режим насыщения. Дальнейшее повышение UВХ приведёт к запиранию эмиттерных переходов транзистора VT1, и в результате он перейдёт в режим, при котором коллекторный переход смещён в прямом направлении, а эмиттерные — в обратном (Инверсный режим включения). Напряжение на выходе схемы UВЫХ=UКЭ.нас=U0 (транзистор VT2 в насыщении).

Таким образом, рассмотренный элемент осуществляет логическую операцию И-НЕ.

Простейшая схема элемента ТТЛ имеет ряд недостатков. При последовательном включении таких элементов, когда к выходу элемента подключаются эмиттеры других таких же элементов, ток, потребляемый от ЛЭ, увеличивается, уменьшается напряжение высокого уровня (лог. «1»). Поэтому элемент обладает низкой нагрузочной способностью. Это обусловлено наличием больших эмиттерных токов многоэмиттерного транзистора в инверсном режиме, которые потребляются от ЛЭ транзисторами-нагрузками.

Кроме того, эта схема имеет малую помехоустойчивость по отношению к уровню положительной помехи: U+ПОМ=UБЭ.нас–U0=UБЭ.нас–2UКЭ.нас. Для устранения указанных недостатков используют схемы ТТЛ со сложным инвертором (Рисунок 11,б).