
- •Принцип функционально-узлового проектирования электронных систем
- •Способы обеспечения качественных характеристик и технологичности функциональных узлов. Способы обеспечения точности и стабильности параметрjв.
- •3. Ряды номиналов и схемы замещения стандартных функциональных рядов
- •4 . Конструкции резисторов и конденсаторов, ряд номиналов, схемы замещения, частотные свойства.
- •Ряды конденсаторов
- •5. Конструктивная, электрическая и электромагнитная совместимость электрорадиосистемах.
- •6. Виды отказов, надежность и гарантированный срок службы сложных технических систем.
- •7. Функциональная микроэлектроника, краткая характеристика и области применения устройств на ее базе.
- •8. Управляемые (зависимые) источники тока и напряжения, идеальный усилитель и его свойства.
- •Идеальный операционный усилитель
- •9. Временная и частотная фильтрация. Виды фильтров. Фильтры низких и высоких частотна пассивных р еактивных элементах.
- •10. Полупроводники и их свойства. Электронно-дырочный переход при отсутствии внешнего напряжения, диффузионный и дрейфовый токи, механизм образования запирающего слоя.
- •1 1. Технологии получения и свойства p-n перехода в полупроводнике, зонная теория p-n перехода.
- •12. Переход металл – полупроводник, его вольтамперная характеристика, способы улучшения линейности.
- •13. Полупроводниковые диоды. Принцип работы, вольтамперные характеристики, частотные свойства. Работа диода при больших токах, область безопасной работы (обр).
- •14. Биполярные транзисторы, схемы замещения, частотные сворйства, усилительные свойства, ключ на транзисторе, обр.
- •1 5. Принцип работы, структура и вольтамперные характеристики динисторов и тиристоров, их основные параметры, вах, обр. Запираемые (двухоперационные) тиристоры.
- •16. Униполярные транзисторы, их разновидности и схемы замещения, схемы включения, частотные свойства, усилительные свойства, усилитель и ключ на транзисторе, обр.
- •Крутизна стоко-затворной характеристики
- •Входное сопротивление
- •Коэффициент усиления
- •17. Принцип работы и вольтамперные характеристики бтиз – транзисторов.
- •18. Сит и бсит – транзисторы. Принцип работы, вольтамперные характеристики. Работа сит – транзистора в ключевом режиме, особенности схем включения, обр.
- •19. Основные схемы включения транзисторов и их характеристики.
- •20. Работа транзистора в ключевом режиме.
- •21. Схемы параллельного и последовательного включения диодов и транзисторов. Способы и схемы выравнивания токов и напряжений.
- •22. Специфика работы полупроводниковых диодов и транзисторов при больших токах. Работа полупроводниковых диодов и транзисторов в составе интегральных схем, эффект близости.
- •Биполярные транзисторы
- •24. Однофазный однополупериодный однофазный выпрямитель. Основные расчетные соотношения характеристик при работе на r, l, c нагрузку, области применения.
- •27. Управляемые выпрямители, основные расчетные соотношения, способы управления.
- •28. Система управления выпрямителями. Вертикальное и горизонтальное управление. Системы импульсно-фазового управления (сифу), классификация, реализация сифу в аналоговом и цифровом виде.
- •29. Сглаживающие фильтры. Основные характеристики и принципы работы.
- •30. Параметрический стабилизатор напряжения. Схема, характеристики, коэффициент стабилизации, его зависимость от внешних факторов. Схема источника опорного напряжения (ион).
- •31. Последовательные и параллельные транзисторные стабилизаторы напряжения и тока непрерывного действия. П араллельный параметрический стабилизатор на стабилитроне
- •Последовательный стабилизатор на биполярном транзисторе
- •3 2. Импульсные стабилизаторы напряжения и тока.
- •33. Регуляторы постоянного напряжения. Основные схемы и режимы их работы, краткая характеристика. Выбор коммутирующих полупроводниковых приборов.
- •34. Конверторы постоянного напряжения. Основные схемы и режим работы, краткая характеристика. Выбор коммутирующих полупроводниковых приборов.
- •35. Тиристорные и танзисторные преобразователи напряжения и частоты. Классификация и назначение.
- •36. Тиристорные пускатели асинхронных двигателей. Принцип работы, структурная схема, основные параметры. Комбинированные пускатели.
- •37. Тиристорные преобразователи частоты с непосредственной связью (нпч). Получение низкочастотного тока и напряжения.
- •Достоинства преобразователя частоты с непосредственной связью с естественной коммутацией
7. Функциональная микроэлектроника, краткая характеристика и области применения устройств на ее базе.
Функциональная (микро)электроника — одно из современных направлений микроэлектроники, основанное на использовании физических принципов интеграции и динамических неоднородностей, обеспечивающих несхемотехнические принципы работы устройств. Функциональная интеграция обеспечивает работу прибора, как единого целого. Разделение его на элементы приводит к нарушению функционирования.
Функциональная микроэлектроника предлагает принципиально новый подход, позволяющий реализовать определенную функцию аппаратуры без применения стандартных базовых элементов, основываясь непосредственно на физических явлениях в твердом теле.
Эти особенности стали основой оптоэлектроники.
Такие явления, как генерация и усиление акустических волн потоком электронов, обусловили появление – акустоэлектроники.
Интересными материалами с еще не вполне раскрытыми перспективами использования их в микроэлектронике являются органические полупроводники.
Параметры приборов, основанных на этом эффекте, значительно превышают соответствующие параметры приборов интегральной микроэлектроники.
Функциональные микросхемы могут выполняться не только на основе полупроводников, но и на основе таких материалов, как сверхпроводники, сегнетоэлектрики, материалы с. фотопроводящими свойствами и др. Для переработки информации можно использовать явления, не связанные с электропроводностью (например, оптические и магнитные явления в диэлектриках, закономерности распространения ультразвука и т.д.).
Таким образом, функциональная микроэлектроника охватывает вопросы получения специальных сред с наперед заданными свойствами и создания различных электронных устройств методом физической интеграции.
8. Управляемые (зависимые) источники тока и напряжения, идеальный усилитель и его свойства.
Источники напряжения (тока) называются зависимыми (управляемыми), если величина напряжения (тока) источника зависит от напряжения или тока другого участка цепи. Зависимыми источниками моделируются электронные лампы, транзисторы, усилители, работающие в линейном режиме.
Р
азличают
четыре типа зависимых источников.
1
.
ИНУН – источник напряжения,
управляемый напряжением: а) нелинейный,
б) линейный, μ – коэффициент
усиления напряжения
2
.
ИНУТ
- источник напряжения, управляемый
током: а) нелинейный, б) линейный, γн –
передаточное сопротивление
3
.
ИТУТ
– источник тока, управляемый током: а)
нелинейный, б) линейный, β -
коэффициент усиления тока
4. ИТУН – источник тока, управляемый напряжением: а) нелинейный, б) линейный, S - крутизна (передаточная проводимость)
Идеальный операционный усилитель
бесконечно большой дифференциальный коэффициент усиления по напряжению;
нулевое напряжение смещения нуля, т.е. при равенстве входных напряжений выходное напряжение равно;
нулевые входные токи;
нулевое выходное сопротивление;
коэффициент усиления синфазного сигнала равен нулю;
мгновенный отклик на изменение входных сигналов.
О
перационный
усилитель, предназначенный для
универсального применения, из соображений
устойчивости должен иметь такую же
частотную характеристику, что и фильтр
нижних частот первого порядка.
Рис. 3. Типичная ЛАЧХ операционного усилителя
частота fп – граница полосы пропускания на уровне 3 дБ,
частота fт – равна произведению коэффициента усиления на ширину полосы пропускания.