
- •Функции двух и трех переменных как функции точки
- •Геометрическое изображение функции двух переменных с помощью поверхностей и линий уровня.
- •Предел функции. Непрерывность в точке и в области.
- •Частные производные функции нескольких переменных, геометрический смысл частных производных функции двух переменных.
- •Полный дифференциал функции нескольких переменных.
- •3) Правила и таблица производных элементарных функций справедливы и применимы для любой переменной ( , либо какой-нибудь другой), по которой ведется дифференцирование.
- •3) Правила и таблица производных элементарных функций справедливы и применимы для любой переменной ( , либо какой-нибудь другой), по которой ведется дифференцирование.
- •Частные производные высших порядков.
- •Экстремум функции двух переменных. Необходимые условия экстремума.
- •Достаточные условия экстремума функции двух переменных.
- •Наибольшее и наименьшее значение функций в замкнутой ограниченной области.
- •Условный экстремум функции двух переменных. Экономический смысл множителей Лангранжа.
- •Первообразная. Неопределенный интеграл.
- •Некоторые дополнительные интегралы
- •Основные свойства неопределенного интеграла.
- •Метод замены переменной в неопределенном интеграле.
- •Метод интегрирования по частям.
- •Интегралы от логарифмов
- •Интегралы от экспоненты, умноженной на многочлен
- •Интегралы от тригонометрических функций, умноженных на многочлен
- •Интегралы от обратных тригонометрических функций. Интегралы от обратных тригонометрических функций, умноженных на многочлен
- •Интегралы от некоторых функций, содержащих трехчлен.
- •Интегрирование рациональных дробей.
- •Интегрирование иррациональных функций.
- •Интегралы от корней. Типовые методы и приемы решения
- •Интегрирование биномиальных интегралов
- •2) Случай второй
- •Интегрирование тригонометрических функций.
- •Использование тригонометрических формул
- •Понижение степени подынтегральной функции
- •Метод замены переменной
- •Универсальная тригонометрическая подстановка
- •См. Конспект
- •См. Конспект
- •Определение определенного интеграла. Основные свойства.
- •Определение
- •Обозначения
- •Свойства
- •Геометрический смысл
- •Теорема об интеграле с переменным верхним пределом.
- •Формула Ньютона-Лейбница.
- •Замена переменной в определенном интеграле.
- •Интегрирование по частям при вычислении определенного интеграла. Метод интегрирования по частям в определенном интеграле
- •Вычисление площадей плоских фигур в прямоугольных координатах.
- •Вычисление площади плоских фигур в полярных координатах.
- •Площадь криволинейного сектора - вывод формулы.
- •Примеры вычисления площади криволинейного сектора.
- •Вычисление длины дуги плоской кривой.
- •Вычисление объема тела по площадям параллельных сечений.
- •Объем тела вращения. Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- •Как вычислить объем тела вращения?
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- •Интегралы с бесконечными пределами интегрирования.
- •Несобственный интеграл с бесконечным пределом (ами) интегрирования
- •Несобственные интегралы от неограниченных функций
- •Интегралы от неограниченных функций.
- •Признаки сходимости несобственных интегралов.
- •Обыкновенные дифференциальные уравнения (основные понятия).
- •Дифференциальные уравнения первого порядка. Задача Коши. Теорема существования и единственности решения задачи Коши (формулировка).
- •Дифференциальные уравнения с разделяющимися переменными.
- •Дифференциальные уравнения с однородными функциями.
- •Как решить однородное дифференциальное уравнение?
- •Линейные дифференциальные уравнения первого порядка и уравнения Бернулли.
- •Дифференциальные уравнения высших порядков, допускающие понижение порядка.
- •Метод повторного интегрирования правой части
- •В дифференциальном уравнении в явном виде отсутствует функция
- •В дифференциальном уравнении в явном виде отсутствует независимая переменная
- •Линейные однородные уравнения n-го порядка, свойства их решений.
- •Теорема о структуре общего решения линейного однородного дифференциального уравнения.
- •Теорема о структуре общего решения линейного неоднородного дифференциального уравнения.
- •Линейные однородные дифференциальные уравнения с постоянными коэффициентами. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •Характеристическое уравнение имеет два различных действительных корня
- •Характеристическое уравнение имеет два кратных действительных корня
- •Характеристическое уравнение имеет сопряженные комплексные корни
- •Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами и правой частью специального вида.
- •Общее решение неоднородного дифференциального уравнения:
Вычисление объема тела по площадям параллельных сечений.
Рассмотрим тело D, ограниченное плоскостями х = а и х = b (рис. 247).
Через
S(x)
обозначим площадь сечения тела D
плоскостью, проходящей через точку с
абсциссой х
[а; b]
и перпендикулярной оси Ох.
Будем предполагать, что
1) функция S(x) непрерывна на [а; b];
2) для любых x1 и x2 из [а; b] сечения тела D плоскостями х = x1 и х = x1 таковы, что одно из них проектируется в другое.
Тело D, обладающее этими свойствами, будем называть телом с допустимыми параллельными сечениями.
Теорема. Объем тела с допустимыми параллельными сечениями вычисляется по формуле
(1)
Отрезок [а; b] точками
разобьем на п отрезков [хi—1 ; хi] длины
Пусть тi и Mi — наименьшее и наибольшее значения функции S(x) на отрезке [хi—1 ; хi] .
Плоскостями х = хi, где i = 1, 2, ..., п — 1, тело D разобьем на n слоев. Выделим i-й слой, соответствующий отрезку [хi—1 ; хi], и построим два цилиндра высрты Δ хi : один с основанием площади Mi , содержащий i-й слой, а другой с основанием площадитi , содержащийся в i-м слое (рис. 248).
Объемы этих цилиндров равны Mi Δ хi и тi Δ хi.
Произведя указанные построения для каждого слоя, получим два ступенчатых тела D'n и D"n таких, что D'n < D < D''n.
Их объемы равны
Так
как функция S(x)
непрерывна, то V'n и
V"n при
п —>
∞ имеют
один и тот же предел, равный
.
Следовательно, объем тела D вычисляется по формуле (1).
Замечание. Можно доказать, что формула (1) остается справедливой и в том случае, когда условие 2) для тела D не выполняется.
Задача. Определить объем тела, отсекаемого от прямого кругового цилиндра плоскостью, проходящей через диаметр основания и составляющей с плоскостью основания угол α (α < 90°). Радиус основания цилиндра равен R.
Введем систему координат так, как показано на рис. 249, и рассмотрим сечения данного тела плоскостями, перпендикулярными оси Оx.
Вычислим площадь сечения плоскостью, проходящей через точку А с абсциссой х, |х| < R. Это сечение представляет собой прямоугольный треугольник ABC, и поэтому
Объем тела вращения. Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
Пример 1
Вычислить
объем тела, полученного вращением
фигуры, ограниченной линиями
,
вокруг
оси
.
Решение: Как
и в задаче на нахождение площади, решение
начинается с чертежа плоской фигуры.
То есть, на плоскости
необходимо
построить фигуру, ограниченную
линиями
,
,
при этом не забываем, что уравнение
задаёт
ось
.
Как рациональнее и быстрее выполнить
чертёж, можно узнать на страницах Графики
и свойства Элементарных функций и Определенный
интеграл. Как вычислить площадь фигуры.
Это китайское напоминание, и на данном
моменте я больше не останавливаюсь.
Чертёж здесь довольно прост:
Искомая плоская фигура заштрихована синим цветом, именно она и вращается вокруг оси . В результате вращения получается такая немного яйцевидная летающая тарелка, которая симметрична относительно оси . На самом деле у тела есть математическое название, но в справочнике что-то лень смотреть, поэтому едем дальше.