
- •Функции двух и трех переменных как функции точки
- •Геометрическое изображение функции двух переменных с помощью поверхностей и линий уровня.
- •Предел функции. Непрерывность в точке и в области.
- •Частные производные функции нескольких переменных, геометрический смысл частных производных функции двух переменных.
- •Полный дифференциал функции нескольких переменных.
- •3) Правила и таблица производных элементарных функций справедливы и применимы для любой переменной ( , либо какой-нибудь другой), по которой ведется дифференцирование.
- •3) Правила и таблица производных элементарных функций справедливы и применимы для любой переменной ( , либо какой-нибудь другой), по которой ведется дифференцирование.
- •Частные производные высших порядков.
- •Экстремум функции двух переменных. Необходимые условия экстремума.
- •Достаточные условия экстремума функции двух переменных.
- •Наибольшее и наименьшее значение функций в замкнутой ограниченной области.
- •Условный экстремум функции двух переменных. Экономический смысл множителей Лангранжа.
- •Первообразная. Неопределенный интеграл.
- •Некоторые дополнительные интегралы
- •Основные свойства неопределенного интеграла.
- •Метод замены переменной в неопределенном интеграле.
- •Метод интегрирования по частям.
- •Интегралы от логарифмов
- •Интегралы от экспоненты, умноженной на многочлен
- •Интегралы от тригонометрических функций, умноженных на многочлен
- •Интегралы от обратных тригонометрических функций. Интегралы от обратных тригонометрических функций, умноженных на многочлен
- •Интегралы от некоторых функций, содержащих трехчлен.
- •Интегрирование рациональных дробей.
- •Интегрирование иррациональных функций.
- •Интегралы от корней. Типовые методы и приемы решения
- •Интегрирование биномиальных интегралов
- •2) Случай второй
- •Интегрирование тригонометрических функций.
- •Использование тригонометрических формул
- •Понижение степени подынтегральной функции
- •Метод замены переменной
- •Универсальная тригонометрическая подстановка
- •См. Конспект
- •См. Конспект
- •Определение определенного интеграла. Основные свойства.
- •Определение
- •Обозначения
- •Свойства
- •Геометрический смысл
- •Теорема об интеграле с переменным верхним пределом.
- •Формула Ньютона-Лейбница.
- •Замена переменной в определенном интеграле.
- •Интегрирование по частям при вычислении определенного интеграла. Метод интегрирования по частям в определенном интеграле
- •Вычисление площадей плоских фигур в прямоугольных координатах.
- •Вычисление площади плоских фигур в полярных координатах.
- •Площадь криволинейного сектора - вывод формулы.
- •Примеры вычисления площади криволинейного сектора.
- •Вычисление длины дуги плоской кривой.
- •Вычисление объема тела по площадям параллельных сечений.
- •Объем тела вращения. Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- •Как вычислить объем тела вращения?
- •Вычисление объема тела, образованного вращением плоской фигуры вокруг оси
- •Интегралы с бесконечными пределами интегрирования.
- •Несобственный интеграл с бесконечным пределом (ами) интегрирования
- •Несобственные интегралы от неограниченных функций
- •Интегралы от неограниченных функций.
- •Признаки сходимости несобственных интегралов.
- •Обыкновенные дифференциальные уравнения (основные понятия).
- •Дифференциальные уравнения первого порядка. Задача Коши. Теорема существования и единственности решения задачи Коши (формулировка).
- •Дифференциальные уравнения с разделяющимися переменными.
- •Дифференциальные уравнения с однородными функциями.
- •Как решить однородное дифференциальное уравнение?
- •Линейные дифференциальные уравнения первого порядка и уравнения Бернулли.
- •Дифференциальные уравнения высших порядков, допускающие понижение порядка.
- •Метод повторного интегрирования правой части
- •В дифференциальном уравнении в явном виде отсутствует функция
- •В дифференциальном уравнении в явном виде отсутствует независимая переменная
- •Линейные однородные уравнения n-го порядка, свойства их решений.
- •Теорема о структуре общего решения линейного однородного дифференциального уравнения.
- •Теорема о структуре общего решения линейного неоднородного дифференциального уравнения.
- •Линейные однородные дифференциальные уравнения с постоянными коэффициентами. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- •Характеристическое уравнение имеет два различных действительных корня
- •Характеристическое уравнение имеет два кратных действительных корня
- •Характеристическое уравнение имеет сопряженные комплексные корни
- •Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами и правой частью специального вида.
- •Общее решение неоднородного дифференциального уравнения:
Интегрирование тригонометрических функций.
На данном уроке мы рассмотрим интегралы от тригонометрических функций, то есть начинкой интегралов у нас будут синусы, косинусы, тангенсы и котангенсы в различных комбинациях. Все примеры будут разобраны подробно, доступно и понятно даже для чайника.
Для успешного изучения интегралов от тригонометрических функций Вы должны хорошо ориентироваться в простейших интегралах, а также владеть некоторыми приемами интегрирования. Ознакомиться с этими материалами можно на лекциях Неопределенный интеграл. Примеры решений и Метод замены переменной в неопределенном интеграле. А сейчас нам потребуются: Таблица интегралов, Таблица производных и Справочник тригонометрических формул. Все методические пособия можно найти на страницеМатематические формулы и таблицы. Рекомендую всё распечатать. Особо заостряю внимание на тригонометрических формулах, они должны быть перед глазами – без этого эффективность работы заметно снизится.
Но
сначала о том, каких интегралов в данной
статье нет.
Здесь не найдется интегралов вида
,
–
косинус, синус, умноженный на какой-нибудь
многочлен (реже что-нибудь с тангенсом
или котангенсом). Такие интегралы
интегрируются по частям, и для изучения
метода посетите урок Интегрирование
по частям. Примеры решений.Также
здесь не найдется интегралов с
«арками» – арктангенсом, арксинусом и
др., они тоже чаще всего интегрируются
по частям.
При нахождении интегралов от тригонометрических функций используется ряд методов:
Использование тригонометрических формул
Понижение степени подынтегральной функции (частный случай п.1)
Метод замены переменной
Универсальная тригонометрическая подстановка (частный случай п.3)
В рамках урока я постараюсь подробно разобрать все перечисленные методы и привести примеры решения типовых интегралов. Следует отметить, что данное разделение по параграфам весьма условно, поскольку очень часто вышеперечисленные правила используются одновременно.
Использование тригонометрических формул
Пример 1
Найти
неопределенный интеграл.
Сначала
полное решение, потом комментарии.
Используем
формулу:
(1)
Мы видим, что в подынтегральном выражении
находится произведение двух функций.
К сожалению, в интегральном исчислении
нет удобной формулы для интегрирования
произведения:
,
поэтому приходится прибегать к различным
ухищрениям. В данном случае мы прерываем
решение значком
и
поясняем, что используется тригонометрическая
формула. Данная формула превращает
произведение в сумму.
(2) Используем свойства линейности неопределенного интеграла – интеграл от суммы равен сумме интегралов; константу можно (и нужно) вынести за знак интеграла.
! Справка: При работе с тригонометрическими функциями следует помнить, что:
Косинус
– это четная функция, то есть
,
минус исчезает без всяких последствий.
В рассматриваемом примере:
Синус
– функция нечетная:
–
здесь минус, наоборот – не пропадает,
а выносится.
(3)
Под интегралами у нас сложные функции
(косинусы не просто от
,
а от сложного аргумента). Это простейшие
из сложных функций, интегралы от них
удобнее найти методом подведения под
знак дифференциала. Более подробно с
данным приёмом можно ознакомиться на
уроке Метод
замены переменной в неопределенном
интеграле.
(4)
Используем табличную формулу
,
единственное отличие, вместо «икса» у
нас сложное выражение.
Готово.
Пример 2
Найти
неопределенный интеграл.
Это пример для самостоятельного решения, полное решение и ответ – в конце урока.
Пример 3
Найти
неопределенный интеграл.
Классика жанра для тех, кто тонет на зачёте. Как Вы, наверное, заметили, в таблице интегралов нет интеграла от тангенса и котангенса, но, тем не менее, такие интегралы найти можно.
(1)
Используем тригонометрическую формулу
(2) Подводим функцию под знак дифференциала.
(3) Используем табличный интеграл .
Пример 4
Найти
неопределенный интеграл.
Это пример для самостоятельного решения, полное решение и ответ – в конце урока.
Пример 5
Найти
неопределенный интеграл.
Степени у нас будут потихоньку повышаться =). Сначала решение:
(1)
Используем формулу
(2)
Используем основное тригонометрическое
тождество
,
из которого следует, что
.
(3) Почленно делим числитель на знаменатель.
(4) Используем свойство линейности неопределенного интеграла.
(5) Интегрируем с помощью таблицы.
Пример 6
Найти
неопределенный интеграл.
Это пример для самостоятельного решения, полное решение и ответ – в конце урока.
Также существуют интегралы от тангенсов и котангенсов, которые находятся в более высоких степенях. Интеграл от тангенса в кубе рассмотрен на уроке Как вычислить площадь плоской фигуры? Интегралы от тангенса (котангенса) в четвертой и пятой степенях можно раздобыть на странице Сложные интегралы.