- •Развитие станков как машин. Станкостроение в Беларуси. Требования к станкам.
- •2. Уровни и методы проектирования станков. Стадии проектирования и освоения производства станков, их содержание
- •3. Синтез кинематических схем обработки. Исполнительные движения в станках. Оптимизация структуры исполнительных движений
- •4.Синтез кинематической структуры простых и сложных кинематических групп
- •5. Определение предельных частот вращения и диапазона регулирования привода
- •6. Ряды частот движения и подач (геометрический и арифметический ряды), стандартные значения знаменателя геометрического ряда и выбор его значения.
- •7. Определение мощности двигателя привода.
- •8. Варианты порядка расположения и порядок переключения групповых передач. График переключения групповых передач.
- •9. Уравнение настройки и характеристика групповых передач.
- •10. Связь между передаточными отношениями и диапазонами регулирования группы и привода в целом. Проверка осуществимости варианта привода.
- •11. Формула структуры привода. Общие рекомендации по выбору структуры привода.
- •12. Графоаналитический метод определения передаточных отношений передач. Структурные сетки. Методика построения.
- •13. Графоаналитический метод определения передаточных отношений передач. График частот вращения. Методика построения. Определение по графику частот вращения передаточных отношений передач.
- •14. Проектирование кинематики приводов подач. Построение графика частот вращения и подач при ступенчатом регулировании скорости.
- •15. Проектирование кинематики привода с многоскоростным приводом.
- •16. Особенности проектирования кинематики привода с перекрытием ступеней скорости
- •17. Проектирование кинематики привода со сложенной структурой
- •18. Проектирование кинематики привода со ступенью возврата
- •19. Проектирование кинематики приводов главного движения с бесступенчатым регулированием скорости
- •20. Способы повышения кинематической точности станков.
- •21. Кинематика механизмов ускоренных перемещений
- •22.Определение числа зубьев колес групповых передач.
- •23. Определение числа зубьев групповых передач со связанными колесами
- •24. Проектирование кинематики винторезных цепей станков
- •25. Проектирование цепей обката зубообрабатывающих станков
- •26. Компоновка приводов главного движения (разделенный и неразделенный привод)
- •27.Компановка металлорежущих станков.
- •28.Основные критерии работоспособности деталей станков. Методы их обеспечения.
- •29.Общая методика расчета деталей станков. Содержание проектного и проверочного расчетов.
- •30. Базовые детали станков. Основные разновидности, назначение, предъявляемые требования. Станины станков. Материалы станин. Конструкции и расчет станин, назначение базовых деталей и направляющих
- •31. Направляющие скольжения, их разновидности, преимущества и недостатки. Конструктивные формы и материалы направляющих скольжения. Расчёт направляющих скольжения на износостойкость.
- •32. Регулировка зазоров в направляющих скольжения. Защита и смазка направляющих скольжения.
- •33. Направляющие жидкостного трения. Гидростатические направляющие. Конструкция направляющих, основные характеристики. Преимущества, область применения.
- •34. Направляющие качения. Конструктивные разновидности. Открытые и закрытые направляющие. Преимущества и недостатки. Область применения. Расчет направляющих качения.
- •35. Комбинированные направляющие. Типовые конструкции. Область применения.
- •36.Коробки скоростей
- •37. Валы и шпиндели металлорежущих станков, их назначение и применение
- •38. Шпиндельные узлы станков, их основные элементы.
- •39.Опоры качения шпинделей. Подшипники качения для опор шпинделей. Выбор класса точности подшипников качения для шпинделей
- •40.Предварительный натяг в подшипниках качения. Методы и конструктивные особенности его обеспечения
- •41.Смазка подшипников жидким и пластинчатым материалом. Система смазывания, область применения. Контактные, бесконтактные уплотнения.
- •42. Опоры скольжения валов и шпинделей. Область применения. Конструкции опор скольжения, применяемые материалы. Способы регулирования зазоров в опоре.
- •43. Гидродинамические опоры. Конструкция. Основные параметры. Область применения.
- •44. ГидродинамичесКие опоры. Конструкция. Основные параметры. Область применения в станках
- •45. Определение расчетных нагрузок в приводах главного движения
- •8.1. Уточнение к.П.Д. Привода модуля
- •8.2. Уточнение номинальной мощности приводного
- •8.3. Определение мощности на валах привода модуля
- •8.4. Определение расчетных значений частот вращения
- •8.5. Определение расчетных значений крутящих моментов
- •3.1 Определение крутящих моментов на валах
- •46. Определение крутящих моментов на валах привода подач
- •47.Расчет валов на жесткость
- •48. Расчет валов на жесткость и виброустойчивость
- •49 Тяговые устройства станков. Назначение. Предъявляемые требования. Типы тяговых устройств. Область применения.
- •50. Передача винт-гайка скольжения
- •51. Расчет винтовых пар скольжения по основным критериям работоспособности
- •52.Винтовые пары качения. Преимущества. Область применения. Конструкция, материалы . Способы создания предварительного натяга. Расчет винтовых пар качения
- •53. Соединение тягового устройства с регулируемым электродвигателем. Типовые механические элементы привода. Конструктивные способы устранения зазоров в них.
- •54. Механизмы для микроперемещений. Конструкции и область применения.
50. Передача винт-гайка скольжения
В зависимости от назначения станка, его конструкции и габаритных размеров применяют различные виды тяговых устройств.' Пара винт—гайка скольжения отличается:
1) малым шагом при применении в качестве тягового устройства однозаходных ходовых винтов, что обусловливает высокую редукцию
и малый крутящий момент на ходовом винте:
Q-тяговая
сила, р-шаг винта,
β - угол подъёма винтовой линии резьбы, лежащей на среднем диаметре; р = З/11° —угол трения в резьбе; р = arctgм, м = = 0,05/0,2 — коэффициент трения, зависящий от скорости скольжения;
2) самотормбжением при одно- и двухзаходных винтах, что позволяет применять эту пару для установочных движений под нагрузкой и для вертикальных перемещений с целью более надежной фиксации подвижного узла.
Недостатком передач винт—гайка скольжения является наличие смешанного трения и связанное с ним изнашивание, а также низкий КПД одно- и двухзаходных винтов (рис. 14.17).
Поскольку точность винтовой пары скольжения определяется в основном винтом (износ гайки мало влияет на ее кинематическую точность), материал ходового винта должен обеспечивать длительное сохранение точности. Это достигается его высокой поверхностной твердостью. Материал ходового винта и гайки выбирают в зависимости от назначения винтовой пары, класса ее точности и требуемой термообработки., Для их изготовления применяют следующие материалы:
азотируемые стали (40ХФА, 18ХГТ), которые после азотирования на глубину 0,5 мм обеспечивают высокую износостойкость и стабильность размеров; HRC353—58;
высокоуглеродистые стали (8ХВ, ХВГ, 7ХГ2ВМ, У10А, У12А) для неупрочненных ходовых винтов, подвергаемых объемной или поверхностной закалке с нагревом токами высокой частоты; HRC350—60;
ср.еднеуглеродистые стали (45, 50) для неответственных винтов; гайки для ходовых винтов прецизионных станков изготовляют из оловянистых бронз БрОФ10-0,5 или БрОЦС 6-6-3; для неответственных передач — из антифрикционного чугуна; в целях экономии оловянистой бронзы крупные гайки выполняют биметаллическими (из стального корпуса и центробежным способом залитой бронзы, на которой затем нарезают резьбу).
Ходовые винты выполняют со стандартной резьбой трапецеидального профиля (угол профиля 30°). Преимуществом этой резьбы перед резьбой прямоугольного профиля является возможность ее фрезерования и шлифования; недостатком — возникновение погрешностей шага при радиальном биении ходового винта станка и поперечных колебаний от прогиба под действием собственного веса. В связи с этим в прецизионных станках применяют резьбы с меньшим углом профиля (10—20°). Другим направлением повышения точности винтовых передач является применение в гайке центрирующих втулок (рис. 14.8, а).
Для регулирования и устранения зазора в резьбе гайку выполняют из двух частей, одна из которых' неподвижно прикреплена к столу или суппорту, а другая может смещаться в осевом направлении. Изменяя толщину прокладки 4, установленной между гайками, в передаче можно полностью устранить зазор. Однако в процессе эксплуатации или изнашивания резьбы гаек и винта необходимо периодически производить регулировки. Применяют и другой способ устранения зазора в передачах, когда при неизменном осевом расположении гаек изменяется их относительное угловое положение.
Длинные ходовые винты могут быть составными для того, чтобы обеспечить надежное и точное соединение отдельных секций, длину которых выбирают от 600 до 1500 мм. Наибольшее распространение получили ходовые винты диаметром от 20 до 60 мм, в тяжелых станках встречаются винты диаметром до 200 мм.
Рис.1 Передача винт-гайка а) скольжения б)качения
Передача винт—гайка предназначена для преобразования вращательного движения в поступательное и наоборот. В ней используют пары винт—гайка скольжения или качения.
Достоинствами передачи винт—гайка скольжения являются большой выигрыш в силе, высокая точность перемещений, малые размеры, возможность обеспечения самоторможения, что позволяет широко использовать ее в грузоподъемных механизмах, например в винтовых домкратах, в механизмах подач станков и приводах роботов, а также в измерительных и регулировочных механизмах.
К недостаткам передачи винт-гайка скольжения следует отнести низкий КПД в передачах скольжения, невозможность получения больших скоростей поступательного движения.
Передачи скольжения до сих пор находят широкое применение вследствие сравнительной простоты конструкции и отработанной технологии получения резьбы. С целью повышения КПД в передачах винт—гайка скольжения используют резьбы, имеющие пониженный приведенный коэффициент трения. К ним относятся трапецеидальные и упорные резьбы с углами рабочего профиля соответственно 15 и 3°. Трапецеидальная резьба в основном диапазоне диаметров бывает мелкая, средняя и крупная. В передачах используют в основном среднюю резьбу. Мелкую резьбу применяют в механизмах, где требуется повышенная точность перемещений, например в микрометрах, крупную — когда передача плохо защищена от пыли и грязи и подвержена износу.Упорные резьбы применяют, когда на передачу действует односторонняя нагрузка, например в нажимных устройствах прокатных станов.
В паре винт—гайка скольжения для повышения износостойкости и снижения склонности к заеданию материал одной из деталей должен быть антифрикционным. Поэтому обычно используют стальные винты в сочетании с бронзовыми, реже чугунными гайками. Для изготовления винтов применяют стали 45, 50 улучшенные, стали 65Г, 40Х с закалкой и последующей шлифовкой, стали 40ХФА, 18ХГТ с азотированием для уменьшения искажения формы и размеров винтов в результате закалки. Гайки выполняют из оловянистых бронз, например БрО10Ф1, в менее ответственных конструкциях из безоловянистого сплава ЦАМ 10-5, а при малых скоростях скольжения и нагрузках используют антифрикционный чугун.
Основной причиной отказа передач винт-гайка является износ резьбы. Для обеспечения сопротивления изнашиванию ограничивают давление в резьбе
где
F – осевая сила, d2 –
средний диаметр резьбы, H1 –
рабочая высота профиля, z=Hг/P
– число витков резьбы, приходящаяся на
высоту гайки.
Эта
формула неудобна для практического
использования, т.к. резьбы геометрически
подобны, то вводят коэффициенты
(рабочей
высоты винта) и
(высоты
гайки).
