Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Mat_analiz_otvety.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
799.23 Кб
Скачать

3) Линейные неоднородные дифференциальные уравнения первого порядка .

4) Линейные однородные дифференциальные уравнения 2-го порядка

5)Линейные неоднородные дифференциальные уравнения 2-ого порядка :

26) Дифференциальные уравнения с разделяющимися переменными:

.

В дифференциальных уравнениях или переменные могут быть разделены, проведением преобразований. Такие ОДУ называются дифференциальными уравнениями с разделяющимися переменными. Соответствующее ДУ с разделенными переменными запишется как .

Пример.

Решить уравнение: .

Разделяем переменные:

.

Интегрируя, получаем

Далее из уравнений и находим X=1, Y=-1. Эти решения – частные решения.

27) Однородные дифференциальные уравнения 1-го порядка:

Однородным дифференциальным уравнением первого порядка, называется уравнение, имеющее вид

   (7)

Уравнение 1-го порядка называется однородным, если для его правой части при любых справедливо соотношение , называемое условием однородности функции двух переменных нулевого измерения.

28) Линейные уравнения первого порядка :

Уравнение вида:

y'+p(x)у=q(х) (10)

где р(х) и q(х) — непрерывные функции, называется линейным дифференциальным уравнением первого порядка. Название уравнения объясняется тем, что неизвестная функция у и ее производная у' входят в уравнение линейно, т. е. в первой степени.

ОПРЕДЕЛЕНИЕ. Если q(х) = 0, то уравнение (10) называется линейным однородным уравнением. Если q(х)≠0, то уравнение (10) называется линейным неоднородным уравнением.

Теорема о структуре общего решения линейного неоднородного уравнения :

Если все коэффициенты уравнения линейного однородного дифференциального уравнениния непрерывны на отрезке [a;b] , а функции y1(x), y2(x),..., yn(x) образуют систему решений соответствующего однородного уравнения, то общее решение неоднородного уравнения имеет вид

y(x,C1,..., Cn) = C1 y1(x) + C2 y2(x) + ... + Cn yn(x) + y*(x),

где C1,...,Cn — произвольные постоянные, y*(x) — частное решение неоднородного уравнения.

Метод Лагранжа (метод вариации произвольных постоянных) — метод для получения общего решения неоднородного уравнения, зная общее решение однородного уравнения без нахождения частного решения.

29)Дифференциальные уравнения второго порядка :

Дифференциальное уравнение второго порядка можно записать в виде . Мы будем рассматривать уравнения второго порядка, которые можно разрешить относительно производной второго порядка, то есть записать в виде

.

Для этих уравнений имеет место теорема существования и единственности решения.

Теорема. Если в уравнении функция и ее частные производные по аргументам y и непрерывны в некоторой области, содержащей , то существует единственное решение уравнения, удовлетворяющее условиям и .

Общим решением дифференциального уравнения второго порядка называется функция , зависящая от двух произвольных постоянных, которая при любых значениях и является решением дифференциального уравнения.

Если в общее решение подставить конкретные значения и , то получится частное решение дифференциального уравнения.

Задача Коши для дифференциального уравнения 2-го порядка (1.1) состоит в отыскании частного решения уравнения, удовлетворяющего начальным условиям: при : , . Однако решение задачи Коши для уравнений 2-го порядка (1.1) при довольно широких предположениях для функций, входящих в уравнение,единственно, т.е. всякие два решения с общим начальным условием , совпадают на пересечении интервалов определения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]