
- •Теоретическая механика (краткий конспект лекций)
- •Ведение
- •Кинематика основные понятия и задачи кинематики
- •Кинематика точки Способы задания движения точки
- •Векторный способ.
- •Координатный способ.
- •Естественный способ.
- •Скорость точки
- •Скорость точки при векторном задании движения.
- •Скорость точки при координатном задании движения.
- •Скорость точки при естественном задании движения.
- •Определение проекций ускорения на естественные оси при координатном способе задания движения
- •Классификация движений точки по ускорению
- •Простейшие движения твердого тела Поступательное движение тела
- •Вращательное движение тела
- •Сферическое движение твердого тела Определение сферического движения.
- •Теорема Эйлера-Даламбера о конечном повороте
- •Угловая скорость, угловое ускорение
- •Скорость точки тела, участвующего в сферическом движении
- •Мгновенная ось вращения
- •Ускорение точки тела
- •Составное движение точки
- •Дифференцирование вектора в подвижных координатах (Формула Бура)
- •Теорема сложения скоростей
- •Сложение ускорений в составном движении
- •Плоскопараллельное движение твердого тела
- •Разложение движения плоской фигуры на поступательное и вращательное
- •Теорема о скоростях плоской фигуры
- •Мгновенный центр скоростей
- •Примеры определения мцс.
- •Теорема об ускорениях точек плоской фигуры
- •Мгновенный центр ускорений
- •Примеры нахождения мцу.
- •Статика введение в статику Основные понятия статики, область их применения
- •Аксиомы статики Аксиома о равновесии системы двух сил.
- •Аксиома о добавлении (отбрасывании) системы сил эквивалентной нулю.
- •Аксиома параллелограмма сил
- •Аксиома о равенстве сил действия и противодействия.
- •Аксиома затвердевания.
- •Аксиома связей
- •Система сходящихся сил Сложение и разложение сил. Проекция силы на ось и на плоскость.
- •Сходящаяся система сил. Условия равновесия систем сходящихся сил.
- •Теория моментов. Теория пар сил. Момент силы относительно точки на плоскости
- •Векторное представление момента силы
- •Момент силы относительно оси
- •Пара сил. Момент пары
- •Свойства пар сил. Сложение пар сил.
- •Произвольная пространственная система сил Лемма о параллельном переносе силы
- •Основная теорема статики
- •Сравнение понятий главного вектора и равнодействующей.
- •Зависимость между главными моментами, вычисленными относительно различных центров приведения
- •Инварианты системы сил
- •Частные случаи приведения системы сил к центру
- •Условия равновесия произвольной системы сил
- •Различные типы систем сил и условия их равновесия:
- •Теорема о моменте равнодействующей (теорема Вариньона)
- •Применение условий равновесия Различные формы условий равновесия
- •Статически определимые и статически неопределимые задачи
- •Методика решения задач на равновесие пространственной системы сил
- •Распределённые силы
- •Частные случаи распределенных нагрузок.
- •Силы трения Трение скольжения
- •Угол и конус трения
- •Трение качения
- •Центр параллельных сил
- •Центр тяжести объёма, площади, линии
- •Динамика
- •Динамика материальной точки
- •Динамика свободной материальной точки
- •Законы механики Галилея-Ньютона
- •1. Закон инерции
- •2. Основной закон динамики точки
- •3. Закон о равенстве сил действия и противодействия.
- •4. Принцип суперпозиции (закон независимого действия сил)
- •Дифференциальные уравнения движения материальной точки
- •Классификация задач динамики.
- •Первая основная задача динамики
- •Вторая основная задача динамики.
- •Динамика несвободной материальной точки
- •Динамика относительного движения точки
- •Принцип относительности Галилея. Относительный покой.
- •Сила веса и сила тяжести.
- •Основы динамики механических систем Основные понятия и определения Cвязи и их классификация
- •Возможные (виртуальные) перемещения
- •Обобщенные координаты. Число степеней свободы системы
- •Центр масс
- •Моменты инерции твердых тел
- •Количество движения
- •Кинетический момент
- •Кинетическая энергия
- •Элементарный и полный импульс силы
- •Работа силы
- •Силовое поле, силовая функция, потенциальная энергия.
- •Силы инерции. Главный вектор и главный момент сил инерции механической системы
- •Обобщенные силы
- •Введение в динамику механической системы
- •Дифференциальные уравнения движения механической системы
- •Общие теоремы динамики
- •Теорема о движении центра масс
- •Теорема об изменении количества движения
- •Теорема об изменении главного вектора кинетического момента
- •Теорема о кинетическом моменте в относительном движении по отношению к центру масс
- •Теорема об изменении кинетической энергии
- •Закон сохранения механической энергии для точки и системы
- •Принцип Даламбера
- •Принцип Лагранжа (принцип возможных перемещений)
- •Общее уравнение динамики
- •Уравнения Лагранжа II рода
- •Динамика твердого тела
- •Поступательное движение
- •Вращательное движение вокруг неподвижной оси
- •Частные случаи:
- •Нахождение реакций в подшипниках
- •Плоское движение
- •Сферическое движение твердого тела
- •Основы теории колебаний
- •Основные понятия и определения
- •Потенциальная энергия системы
- •Кинетическая энергия системы
- •Диссипативная функция Рэлея
- •Уравнение Лагранжа II рода
- •Свободные колебания системы
- •Ошибка! Закладка не определена.
- •Затухающие колебания системы
- •Ошибка! Закладка не определена.
- •Ошибка! Закладка не определена.
- •Вынужденные колебания системы
- •Ошибка! Закладка не определена.Ошибка! Закладка не определена.
- •Ошибка! Закладка не определена.
- •Исследование вынужденных колебаний
- •Резонанс
- •Ошибка! Закладка не определена.
- •Биения.
- •Ошибка! Закладка не определена.
- •Ошибка! Закладка не определена.
- •Критерии и условия, используемые при исследовании колебательных движений механических систем
- •Коэффициент динамичности.
- •Ошибка! Закладка не определена.
- •Ошибка! Закладка не определена.
- •Коэффициент передачи силы
- •Список литературы Основной
- •Дополнительный
Система сходящихся сил Сложение и разложение сил. Проекция силы на ось и на плоскость.
В соответствии с аксиомой сложения сил, две силы, приложенные к одной точке можно заменить одной — равнодействующей, которая находится по правилу параллелограмма или по правилу треугольника. Легко обобщить это правило на тот случай, когда к одной точке приложено более двух сил. Для нахождения их равнодействующей необходимо из конца первого вектора провести второй вектор и т. д. Поясним это на рис.2.11.
Рис.2.11 Равнодействующая сходящейсясистемы сил
Полученный многоугольник называется силовым, замыкающая сторона которого — вектор , определяет вектор равнодействующей, направлен из начала первого вектора силы в конец последнего вектора силы.
Решение задачи об определении суммы нескольких векторов (вектора ) является единственным и не зависит от того, в каком порядке складываются слагаемые векторы.
Рис.2.12 Разложение силы на составляющие
Противоположный по смыслу алгоритм — разложение векторов, не имеет единственного решения, до тех пор, пока не заданы сами направления разложения сил.
Например, силу
,
расположенную в плоскости (рис.2.12),
можно разложить по взаимно перпендикулярным
осям
и
,
а можно и по любым другим
и
,
При этом на оси
и
,
наложено всего одно условие — они
не должны быть параллельны друг другу.
Cилы
и
или
и
называются составляющими силы
.
Рис.2.13 Проекции силы на плоскости
Рассмотрим понятие проекции силы на
ось. Проекцией силы на заданную ось,
например
,
называется скалярное произведение
вектора силы
на единичный вектор
,
характеризующий положительное
направление оси, т. е.
Угол
находится между положительным
направлением оси
и направлением вектора силы
.
В том случае, когда
проекция
,
т. к.
.
Модуль этой проекции удобно вычислять
через угол
.
В соответствии с определением проекции
силы
и скалярного произведения векторов
можно записать
Вернемся к вопросу о разложении силы
и рассмотрим эту процедуру в
пространственном случае. Часто
встречаются два варианта разложения:
в первом случае (рис.2.13 а) ориентация
вектора в пространстве задана двумя
углами
— между осью
и направлением составляющей силы
,
лежащей в плоскости
.
и углом
— между вектором
и его составляющей вдоль оси
;
во втором случае (рис.2.13 б) положение
вектора
определяется тремя углами между
направлением вектора
и положительными направлениями
соответствующих осей:
.
Рис.2.13 Проекции силы впространстве
Вначале разложим вектор
по двум направлениям
и
.
Ось
расположена в плоскости, проходящей
через вектор силы
и ось Oz:
Вектор
раскладывается по горизонтальным осям
и
.
Окончательно: |
|
Последняя формула будет справедлива и при втором способе задания ориентации вектора . В этом случае известны углы между вектором и направлением осей ; и : . По определению проекции силы на ось имеем
Введённые понятия позволяют перейти к условиям равновесия системы сходящихся сил.