
- •8. Основные формы, виды и способы статистического наблюдения.
- •Этапы статистического наблюдения:
- •2. Сбор информации
- •3. Разработка предложений и рекомендаций по совершенствованию статистического наблюдения
- •Виды несплошного статистического наблюдения.
- •Программно - методологические вопросы статистического наблюдения.
- •Организационные вопросы статистического наблюдения
- •Контроль материалов статистического наблюдения.
- •Разработка сказуемого статистической таблицы.
- •Сущность, значение и виды статистических группировок. Построение группировки по количественному признаку.
- •Аналитические группировки.
- •Виды статистических таблиц.
- •Ряды распределения и их характеристики.
- •Статистический график, его элементы и правила построения.
- •Графическое изображение динамики социально - экономических явлений.
- •Абсолютные статистические показатели.
- •Относительные статистические показатели Относительные статистические величины: понятие, виды.
- •Средняя величина (св) как категория статистики.
- •Виды средних величин.
- •Средняя арифметическая и её свойства.
- •25. Показатели вариации.
- •26. Внутригрупповая и межгрупповая вариация.
- •27. Взаимосвязи общественных явлений, их виды и формы
- •28. Коэффициенты Фехнера и Спирмена.
- •29. Значение и теоретические основы выборочного наблюдения.
- •30. Методы отбора единиц в выборочную совокупность
- •31. Ошибки выборочного наблюдения
- •Определение объема выборочной совокупности (при повторном и бесповторном отборе)
- •36 Анализ взаимосвязей качественных признаков
- •39. Аналитические показатели ряда динамики.
- •3.1.Абсолютный прирост
- •3.2.Темп роста
- •3.3.Коэффициент роста
- •3.4.Темп прироста
- •3.5.Абсолютное значение 1% прироста
- •3.6.Относительное ускорение
- •4.Среднее по рядам динамики
- •4.1.Рассчет среднего уровня ряда
- •4.2.Рассчет среднего абсолютного прироста
- •4.3.Рассчет среднего темпа роста и прироста
- •40. Средние аналитические показатели ряда динамики.
- •41. Определение основной тенденции динамики на основе укрупнения интервалов и скользящей средней.
- •42. Определение основной тенденции динамики методом аналитического выравнивания.
- •43. Анализ сезонных колебаний.
- •44. Сравнительный анализ рядов динамики
- •45. Связный анализ (корреляция) рядов динамики.
- •46. Сущность и значение индексного метода.
- •47. Агрегатные индексы, их взаимосвязи.
- •48. Индексы в среднеарифметической и среднегармонической формах.
- •49 Цепные и базисные индексы с переменными и постоянными весами.
- •50 Индексы производительности труда.
- •55 Показатели концентрации и централизации
46. Сущность и значение индексного метода.
Индекс — это обобщающий относительный показатель, характеризующий изменение уровня общественного явления во времени, по сравнению с программой развития, планом, прогнозом или его соотношение в пространстве.
Наиболее распространена сравнительная характеристика во времени. В этом случае индексы выступают как относительные величины динамики.
Индексный метод является также важнейшим аналитическим средством выявления связей между явлениями. При этом применяются уже не отдельные индексы, а их системы.
В статистической практике индексы применяются при анализе развития всех отраслей экономики, на всех этапах экономической работы. В условиях рыночной экономики особенно возросла роль индексов цен, доходов населения, фондового рынка и территориальных индексов.
Элиминирование, то есть расчет влияния отдельных факторов на обобщающий показатель, может осуществляться также индексным методом. Этот метод применяется для расчленения экономических показателей. Индексы являются разновидностью относительных величин. Индексы применяются в анализе хозяйственной деятельности с целью характеристики экономических явлений, состоящих из элементов, которые не следует суммировать.
Технически любой индекс представляет собой показатель, определяемый как соотношение двух каких-либо величин. Последние являются, по существу, определенными состояниями известного признака. С помощью индексов осуществляются сравнения фактических показателей с базисными, то есть, как правило, с плановыми и с показателями предшествующих периодов.
Различают два основных вида индексов:
простые (частные, индивидуальные);
аналитические (общие, агрегатные).
В первом случае исследуемый признак принимается без учета связи этого признака с остальными признаками исследуемых экономических явлений.
Во втором случае изучаемый признак используется не изолированно, а в его взаимосвязи с другими признаками.
Поэтому любой аналитический индекс состоит из двух элементов:
индексируемый признак P , то есть тот признак, изменение которого подвергается изучению;
весовой признак Q .
С помощью весовых признаков исследуются изменения экономических явлений, составляющие элементы которых являются несоизмеримыми. Следует иметь в виду, что простые и аналитические индексы взаимно дополняют друг друга.
47. Агрегатные индексы, их взаимосвязи.
Латинское слово «агрегат» означает «складываемый, суммируемый». Особенность этой формы индекса состоит в том, что в агрегатной форме непосредственно сравниваются две суммы одноименных показателей. Числитель и знаменатель агрегатного индекса представляют собой сумму двух величин, одна из которых меняется (индексируемая величина), а другая остается неизменной в числителе и знаменателе (вес индекса).
Индексируемой величиной называется признак, изменение которого изучается (цена товаров, курс акций, затраты рабочего времени на производство продукции, количество проданных товаров и т.д.). Вес индекса - это величина, служащая для целей соизмерения индексируемых величин.
За каждым экономическим индексом стоят определенные экономические категории. Экономическое содержание индекса предопределяет методику его расчета.
Методика построения агрегатного индекса предусматривает решение трех вопросов:
1. Какая величина будет индексируемой
2. По какому составу разнородных элементов явления необходимо исчислить индекс
3. Что будет служить весом при расчете индекса.
Агрегатный индекс цен. Общее изменение цен можно определить, если считать постоянной величиной количество реализованных товаров за отчетный или базисный период. Если для получения индекса цен принимать в качестве весов данные о количестве реализованных товаров за отчетный период, можно получить следующую формулу агрегатного индекса цен:
где p1 и р0 – единицы реализованных товаров в отчетном и базисном периодах;
q1 – количество реализованных товаров в отчетном периоде.
Если примем в качестве весов данные о количестве реализованных товаров в базисном периоде, то формула агрегатного индекса цен примет вид:
При выборе веса индекса принято руководствоваться следующим правилом: если строится индекс количественного показателя, то веса берутся за базисный период, при построении индекса качественного показателя используются веса отчетного периода.