Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
skompanovannye_voprosy_na_ekz.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
721.59 Кб
Скачать

45. Связный анализ (корреляция) рядов динамики.

При изучении развития явления во времени часто возникает необходимость оценить степень взаимосвязи в изменениях уровней 2-х или более рядов динамики различного содержания, но связанных между собой. Эта задача решается методами коррелирования:

уровней ряда динамики

отклонений фактических уровней от тренда

последовательных разностей

Коррелирование уровней динамических рядов с применением парного коэффициента корреляции правильно показывает тесноту связи лишь в том случае, если в каждом из них отсутствует автокорреляция. Наличие зависимости между последующими и предшествую­щими уровнями динамического ряда в статистической литерату­ре называют автокорреляцией.

Поэтому прежде, чем коррелировать ряды динамики по уровням, необходимо проверить каждый из рядов на наличие или отсутствие в них автокорреляции. Применение методов классической теории корреляции в ди­намических рядах связано с некоторыми особенностями. Преж­де всего, это наличие для большинства динамических рядов зави­симости последующих уровней от предыдущих.

Корреляционная связь (которую также называют неполной, или статистической) проявляется в среднем, для массовых наблюдений, когда заданным значениям зависимой переменной соответствует некоторый ряд вероятных значений независимой переменной. Объяснение тому – сложность взаимосвязей между анализируемыми факторами, на взаимодействие которых влияют неучтенные случайные величины. Поэтому связь между признаками проявляется лишь в среднем, в массе случаев. При корреляционной связи каждому значению аргумента соответствуют случайно распределенные в некотором интервале значения функции.

В корреляционных связях между изменением фактор­ного и результативного признака нет полного соответствия. Одновременное воз­действие на изучаемый признак большого количества самых разнообразных факторов приводит к тому, что одному и тому же значению признака-фактора соответствует целое распределение значений результативного признака, поскольку в каждом конкрет­ном случае прочие факторные признаки могут изменять силу и направленность своего воздействия.

Например, некоторое увеличение аргумента повлечет за собой лишь среднее увеличение или уменьшение (в зависимости от направленности) функции, тогда как конкретные значения у отдельных единиц наблюдения будут отличаться от среднего. Такие зависимости встречаются повсеместно. Например, в сельском хозяйстве это может быть связь между урожайностью и количеством внесенных удобрений, зависимость себестоимости от урожайности сельскохозяйственных культур (продуктивности скота, птицы). Очевидно, что количество внесенных удобрений участвует в формировании урожая. Но для каждого конкретного поля или участка одно и то же количество внесенных удобрений вызовет разный прирост урожайности, так как во взаимодействии находится еще целый ряд факторов (погода, состояние почвы и др.), которые и формируют конечный результат. Однако в среднем такая связь наблюдается: так увеличение массы внесенных удобрений, ведет к росту урожайности, рост урожайности, в свою очередь, ведет к снижению себестоимости.

Необходимые условия применения корреляционного анализа:

Наличие достаточно большого количества наблюдений о величине исследуемых факторных и результативных показателей (в динамике или по совокупности однородных объектов).

Исследуемые факторы должны иметь количественное измерение и отражение в тех или иных источниках информации.

Применение корреляционного анализа позволяет решить следующие задачи:

определить изменение результативного показателя под воздействием одного или нескольких факторов (в абсолютном измерении), т.е. определить, на сколько единиц изменяется величина результативного показателя при изменении факторного на единицу;

установить относительную степень зависимости результативного показателя от каждого фактора.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]