- •8. Основные формы, виды и способы статистического наблюдения.
- •Этапы статистического наблюдения:
- •2. Сбор информации
- •3. Разработка предложений и рекомендаций по совершенствованию статистического наблюдения
- •Виды несплошного статистического наблюдения.
- •Программно - методологические вопросы статистического наблюдения.
- •Организационные вопросы статистического наблюдения
- •Контроль материалов статистического наблюдения.
- •Разработка сказуемого статистической таблицы.
- •Сущность, значение и виды статистических группировок. Построение группировки по количественному признаку.
- •Аналитические группировки.
- •Виды статистических таблиц.
- •Ряды распределения и их характеристики.
- •Статистический график, его элементы и правила построения.
- •Графическое изображение динамики социально - экономических явлений.
- •Абсолютные статистические показатели.
- •Относительные статистические показатели Относительные статистические величины: понятие, виды.
- •Средняя величина (св) как категория статистики.
- •Виды средних величин.
- •Средняя арифметическая и её свойства.
- •25. Показатели вариации.
- •26. Внутригрупповая и межгрупповая вариация.
- •27. Взаимосвязи общественных явлений, их виды и формы
- •28. Коэффициенты Фехнера и Спирмена.
- •29. Значение и теоретические основы выборочного наблюдения.
- •30. Методы отбора единиц в выборочную совокупность
- •31. Ошибки выборочного наблюдения
- •Определение объема выборочной совокупности (при повторном и бесповторном отборе)
- •36 Анализ взаимосвязей качественных признаков
- •39. Аналитические показатели ряда динамики.
- •3.1.Абсолютный прирост
- •3.2.Темп роста
- •3.3.Коэффициент роста
- •3.4.Темп прироста
- •3.5.Абсолютное значение 1% прироста
- •3.6.Относительное ускорение
- •4.Среднее по рядам динамики
- •4.1.Рассчет среднего уровня ряда
- •4.2.Рассчет среднего абсолютного прироста
- •4.3.Рассчет среднего темпа роста и прироста
- •40. Средние аналитические показатели ряда динамики.
- •41. Определение основной тенденции динамики на основе укрупнения интервалов и скользящей средней.
- •42. Определение основной тенденции динамики методом аналитического выравнивания.
- •43. Анализ сезонных колебаний.
- •44. Сравнительный анализ рядов динамики
- •45. Связный анализ (корреляция) рядов динамики.
- •46. Сущность и значение индексного метода.
- •47. Агрегатные индексы, их взаимосвязи.
- •48. Индексы в среднеарифметической и среднегармонической формах.
- •49 Цепные и базисные индексы с переменными и постоянными весами.
- •50 Индексы производительности труда.
- •55 Показатели концентрации и централизации
3.6.Относительное ускорение
Если систематически растут цепные темпы роста, то ряд сравнивается с относительным ускорением. Относительное ускорение можно определить как разность следующих друг за другом темпов роста или прироста:
Полученная величина выражается в процентных пунктах.
Относительное ускорение может быть измерено и с помощью коэффициента опережения.
Коэффициент опережения определяется как отношение последующего темпа роста к предыдущему:
Коэффициенты опережения принято рассчитывать в сравнительном анализе нескольких рядов динамики. При параллельном изучении нескольких рядов динамики обычно их приводят к одному основанию путем расчета базисных темпов роста с одинаковой по времени базой сравнения для всех рядов. Это позволяет наглядно видеть, для какого ряда интенсивность изменения уровней наибольшая
4.Среднее по рядам динамики
Для обобщения данных по рядам динамики рассчитываются:
- средний уровень ряда;
- средний абсолютный прирост;
- средний темп роста и прироста.
4.1.Рассчет среднего уровня ряда
Для разных видов рядов динамики средний уровень рассчитывается неодинаково.
По интервальному динамическому ряду из абсолютных величин с равными интервалами средний уровень определяется по средней арифметической простой из уровней ряда:
Где yi - уровни ряда для i-го периода; n- число уровней в ряду динамики.
По интервальному временному ряду из относительных и средних величин средний уровень определяется так же, как в статистике, т.е. с учетом информации по признакам, связанным с усредняемым, т.е. по формуле средней арифметической взвешенной:
Однако часто в настоящее время при компьютерной обработке данных средний уровень интервального ряда из относительных и средних величин также определяется по средней арифметической простой.
По моментному динамическому ряду в зависимости от исходной информации средний уровень ряда определяется тремя способами.
Если известны данные об изменении уровня ряда внутри временного промежутка, то средний уровень определяется как средняя арифметическая взвешенная:
где yi - уровень моментного динамического ряда, ti - период, в течение которого уровень yiостаётся неизменным, т.е. период действия yi..
Однако не всегда имеется информация об изменении уровня моментного ряда внутри рассматриваемого временного промежутка. В этом случае средний уровень моментного ряда динамики определяется приближенно как средняя арифметическая взвешенная из парных смежных средних:
Найденные как средняя арифметическапростая из двух рядом стоящих уровней т.е.
Если интервалы между датами равны, то рассмотренная ранее средняя арифметическая взвешенная преобразуется в тождественную ей среднюю хронологическую:
Данная формула используется, например, для расчета среднегодовой стоимости имущества при уплате налога на имущество.
Кроме среднего уровня, при анализе и прогнозировании широко используются средние показатели изменения уровней ряда, а именно средний абсолютный прирост и средний темп роста.
4.2.Рассчет среднего абсолютного прироста
Средний абсолютный прирост определяется как средняя арифметическая простая из цепных приростов:
Так как ∑△цепные=△базисное , средний абсолютный прирост можно определять следующим образом:
где уп - последний уровень динамического ряда; у0 – уровень, взятый за базу сравнения.
