
- •1.Физиология как научная основа медицины. Значение знаний по нормальной физиологии для врача.
- •6.Синапсы:строение, классификация, общие свойства, физиологическая роль. Современные представления о механизмах передачи возбуждения в синапсах
- •6.Нервная система и ее роль в обеспечении жизнедеятельности целостного организма. Нервные центры: физиологическое понятие, функции, свойства
- •8. Рефлекторный принцип функционирование нервной системы. Виды рефлексов. Структура рефлекторной дуги
- •9. Основные принципы распространения возбуждения в цнс. Возбуждающие синапсы и их медиаторные механизмы
- •10. Торможение в нервной системе
- •11.Основные принципы координационной деятельности цнс: реципрокного торможения, общего конечного пути, доминанты, обратной афферентации
- •14.Понятие физиологической функции и ее регуляции. Уровни регуляции. Типы регуляции. Нервный и гуморальный механизм регуляции функции, их сравнительная характеристика
- •16.Понятие об эндокринной системе. Гипофиз, его связи с гипоталамусом. Гормоны гипофиза и гипоталамуса, их роль в регуляции деятельности эндокринных и неэндокринных органов
- •17. Эндокринная функция щитовидной и паращитовидных желез
- •18. Физиология надпочечников. Роль гормонов коркового и мозгового вещества надпочечников в регуляции функций организма
- •19. Эндокринная функция поджелудочной железы и роль ее гормонов в регуляции углеводного, жирового и белкового обмена
- •20. Половые железы. Мужские и женские половые гормоны и их физиологическая роль
- •42 Учение Павлова о типах высшей нервной деятельности животных и человека, их классификация и характеристика
- •45Эмоции: механизмы возникновения,роль,проявления. Эмоциональный стресс-фактор риска для здоровья, фазы и основные проявления стресса
- •46Учение Павлова оI и II сигнальных системах действительности. Речь, функции, виды. Функциональная асимметрия коры больших полушарий, связана с развитием речи у человека
- •47 Потребности и мотивация: классификация, механизмы возникновения ,их роль в целенаправленном поведении(на примере пищедобывательного поведения.)
- •49 Роль воды в организме,еесодержание,распределение, баланс. Электролитный состав плазмы крови
- •50 Белки плазмы крови, их характеристики и значения. Соэ: определение, факторы влияющие на неё
- •51 Эритроциты : строение ,кол-во, функции. Виды гемоглобина и его соединения, их физиологическое значение
- •52Лейкоциты, их виды ,количество, функции. Лейкоцитарная формула, возрастные особенности. Лейкоцитоз, лейкопения.
- •53 Тромбоциты: строение, кол-во, функции. Понятие о системе гемостаза и его звеньях.
- •54 Группы крови( системы аво, Rh , hla и другие). Определение группы крови в системе аво. Принцип переливания крови. Факторы риска при роботе с кровью:медроботника, донора, больного
- •56 Строение, физиологические свойства и функции проводящей системы сердца
- •57 Строение , физиологические свойства и функции сократительного миокарда. Законы сокращения сердца.
- •58 Последовательность фаз и периодов сердечного цикла, их характеристика
- •59 Электрическое проявление сердечной деятельности. Общий план анализа экг .Происхождение зубцов,сегментов и интервалов экг. Понятие об экстрасистолах.
- •60 Тоны сердца их прохождение. Полиграфия , соотношение экг и фкг
- •61 Саморегуляция деятельности сердца
- •62 Гуморальная регуляция деятельности сердца
- •63.Рефлекторная регуляция деятельности сердца.Характеристика влияния парасимпатический и симпатических волокон и их медиаторов на деятельность сердца.
- •64.Основные законы гемодинамики.Функциональная классификация различных отделов сосудистого русла.Факторы обеспечивающие движения крови по сосудам.
- •65.Роль кровяного давления,факторы определяющие его величину.
- •66.Артериальный пульс его происхождения.Клинико-физиологические характеристики пульса.
- •68.Рефлекторная регуляция тонуса сосудов. Сосудодвигательный центр его афферентные и эфферентные связи.
- •69.Гуморальная регуляция тонуса сосудов.
- •70.Понятие о нормальных величинах ад.
- •71.Роль системы дыхания в организме. Основные этапы дыхание. Биомеханика вдоха и выдоха.
- •72.Давление в плевральной полости его происхождение и роль в механизме вентиляции легких.Показатели в вентиляции легких.
- •73.Газообмен в легких. Состав атмосферного выдыхаемого и альвеолярного воздуха. Газообмен между кровью и тканями и в тканях.
- •74.Транспорт газов кровью.Транспортные формы о2 и со2.Факторы, влияющие на сродство гемоглобина к о2 и со2.Кислородная емкость крови.
- •75.Физиология дыхательных путей. Дыхательный цикл. Вентиляция легких .Давление в плевральной полости,его роль и изменение при дыхании. Механизм вдоха и выдоха.
- •76.Дыхательный центр:представление о его структуре и локализации,его афферентные и эфферентные связи.
- •77.Рефлекторная саморегуляция дыхания. Механизм смены дыхательных фаз. Регуляторное влияние на дыхательный центр со стороны высших отделов головного мозга.
- •78.Гуморальная регуляция дыхания.Роль углекислоты.Механизм первого вдоха новонорожденого ребенка.
- •79.Пищевые мотивации. Физиологические механизмы голода и насыщения. Функция желудочно-кишечного тракта.
- •80.Пищеварение в полости рта. Механическая и химическая переработка пищи. Формирование пищевого комка.
- •81.Жидкости в полости рта: ротовая,слюна слюнных желез. Функции и состав ротовой жидкости.Виды чувствительности полости рта.
- •82.Слюноотделение,его регуляция. Сиалометрия,нормосаливация. Состояние гипер- и гипосаливации, их проявления.
- •83.Глотание,его фазы. Рефлекторная регуляция глотания. Функциональная связь процессов дыхания,жевания и глотания.
- •84. Пищеварение в желудке. Состав и свойства желудочного сока. Фазы и механизмы регуляции желудочной секреции.
- •85. Пищеварение в 12-перстной кишке. Внешнесекреторная деятельность поджелудочной железы. Состав и свойства сока поджелудочной железы. Регуляция панкреатической секреции.
- •86. Функции печени, роль печени в пищеварении. Состав, свойства и функции желчи. Регуляция образования желчи, выделения ее в 12-перстную кишку.
- •87. Полостной и мембранный гидролиз пищевых веществ в тонком кишечнике. Моторная деятельность тонкой кишки и ее регуляция.
- •88. Пищеварение в толстом кишечнике. Роль микрофлоры толстого кишечника для организма. Моторная деятельность толстого кишечника и ее регуляции.
- •89. Всасывание веществ в различных отделах пищеварительного тракта. Виды и механизмы всасывания.
- •91. Азотистый баланс и факторы, влияющие на азотистое равновесие.
- •92. Пластическая и энергетическая роль белков, жиров и углеводов. Понятие нормальной потребности в питательных веществах.
- •93. Энергетический баланс организма. Рабочий обмен. Энергозатраты организма при различных видах трудовой деятельности.
- •96. Теплопродукция. Обмен веществ как источник образования тепла. Роль отдельных органов в теплопродукции, регуляция этого процесса. Теплоотдача, способы отдачи тепла и их регуляция.
- •97. Структура и функции нефрона. Структура почечного фильтра, механизм клубочковой фильтрации. Состав и количество первичной мочи.
- •98. Механизмы канальцевой реабсорбции и секреции. Количество, состав и свойства конечной мочи.
- •99. Нервные и гуморальные механизмы регуляции дестельности почек и мочевого пузыря.
- •100. Понятие о коэффициенте очищения веществ в почках.
- •101. Показатели общего клинического анализа крови и их физиологическая оценка.
- •102. Принципы определения групповой принадлежности крови в системе аво, а также резус-принадлежности крови.
- •103. Электрокардиография.
- •104. Кровезамещающие растворы и требования к ним.
- •105.Фазовый анализ сердечного цикла
- •106.Термометрия
- •107. Спирография
- •108. Количество эритроцитов в крови, методики подсчета
- •109. Принципы составления пищевого рациона
- •110. Оценка функций эндокринных желез человека
- •111. Электроэнцефалография
- •112. Аудиометрия, ее значение для оценки слуха. Возрастные особенности слуха
- •113. Электромиография жевательных мышц
- •114. Электроодонтометрия
- •115. Принципы исследования психических функций человека ( память,внимание)
- •116. Определение свойств пульса методом пальпации
91. Азотистый баланс и факторы, влияющие на азотистое равновесие.
Азотистым балансом называют разность между количеством азота, содержащегося в пище человека, и его уровнем в выделениях.
Азотистое равновесие — состояние, при котором количество выведенного азота равно количеству поступившего в организм. Азотистое равновесие наблюдается у здорового взрослого человека.
Положительный азотистый баланс — состояние, при котором количество азота в выделениях организма значительно меньше, чем содержание его в пище, то есть наблюдается задержка азота в организме.Положительный азотистый баланс отмечается у детей в связи с усиленным ростом, у женщин во время беременности, при усиленной спортивной тренировке, приводящей к увеличению мышечной ткани, при заживлении массивных ран или выздоровлении после тяжелых заболеваний.
Азотистый дефицит (отрицательный азотистый баланс) отмечается тогда, когда количество выделяющегося азота больше содержания его в пище, поступающей в организм. Отрицательный азотистый баланс наблюдается при белковом голодании, лихорадочных состояниях, нарушениях нейроэндокринной регуляции белкового обмена.
Важнейшими азотистыми продуктами распада белков, которые выделяются с мочой и потом, являются мочевина, мочевая кислота и аммиак.
92. Пластическая и энергетическая роль белков, жиров и углеводов. Понятие нормальной потребности в питательных веществах.
Обмен белков. Белками (протеинами) называют высокомолекулярные соединения, построенные из аминокислот. Функции:
Структурная, или пластическая, функция состоит в том, что белки являются главной составной частью всех клеток и межклеточных структур. Каталитическая, или ферментная, функция белков заключается в их способности ускорять биохимические реакции в организме.
Защитная функция белков проявляется в образовании иммунных тел (антител) при поступлении в организм чужеродного белка (например, бактерий). Кроме того, белки связывают токсины и яды, попадающие в организм, и обеспечивают свертывание крови и остановку кровотечения при ранениях.
Транспортная функция заключается в переносе многих веществ. Важнейшей функцией белков является передача наследственных свойств, в которой ведущую роль играют нуклеопротеиды. Различают два основных типа нуклеиновых кислот: рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК).
Регуляторная функция белков направлена на поддержание биологических констант в организме.
Энергетическая роль белков состоит в обеспечении энергией всех жизненных процессов в организме животных и человека. При окислении 1 г белка в среднем освобождается энергия, равная 16,7 кДж (4,0 ккал).
Потребность в белках. В организме постоянно происходит распад и синтез белков. Единственным источником синтеза нового белка являются белки пищи. В пищеварительном тракте белки расщепляются ферментами до аминокислот и в тонком кишечнике происходит их всасывание. Из аминокислот и простейших пептидов клетки синтезируют собственный белок, который характерен только для данного организма. Белки не могут быть заменены другими пищевыми веществами, так как их синтез в организме возможен только из аминокислот. Вместе с тем белок может замещать собой жиры и углеводы, т. е. использоваться для синтеза этих соединений.
Биологическая ценность белков. Некоторые аминокислоты не могут синтезироваться в организме человека и должны обязательно поступать с пищей в готовом виде. Эти аминокислоты принято называтьнезаменимыми, или жизненно-необходимыми. К ним относятся: валин, метионин, треонин, лейцин, изолейцин, фенилаланин, триптофан и лизин, а у детей еще аргинин и гистидин. Недостаток незаменимых кислот в пище приводит к нарушениям белкового обмена в организме. Заменимые аминокислоты в основном синтезируются в организме.
Белки, содержащие весь необходимый набор аминокислот, называют биологически полноценными. Наиболее высока биологическая ценность белков молока, яиц, рыбы, мяса. Биологически неполноценными называют белки, в составе которых отсутствует хотя бы одна аминокислота, которая не может быть синтезирована в организме. Неполноценными белками являются белки кукурузы, пшеницы, ячменя.
Распад белка и синтез мочевины.
Обмен жиров. Жиры делят на простые липиды (нейтральные жиры, воски), сложные липиды (фосфолипиды,гликолипиды, сульфолипиды) и стероиды (холестерин и др.). Основная масса липидов представлена в организме человека нейтральными жирами. Нейтральные жиры пищи человека являются важным источником энергии. При окислении 1 г жира выделяется 37,7 кДж (9,0 ккал) энергии.
Суточная потребность взрослого человека в нейтральном жире составляет 70—80 г, детей 3—10 лет — 26—30 г.
Нейтральные жиры в энергетическом отношении могут быть заменены углеводами. Однако есть ненасыщенные жирные кислоты — линолевая, линоленовая и арахидоновая, которые должны обязательно содержаться в пищевом рационе человека, их называют не заменимыми жирными кислотами.
Нейтральные жиры, входящие в состав пищи и тканей человека, представлены главным образом триглицеридами, содержащими жирные кислоты — пальмитиновую, стеариновую, олеиновую, линолевую и линоленовую.
В обмене жиров важная роль принадлежит печени. Печень — основной орган, в котором происходит образование кетоновых тел (бета-оксимасляная, ацетоуксусная кислоты, ацетон). Кетоновые тела используются как источник энергии.
Фосфо- и гликолипиды входят в состав всех клеток, но главным образом в состав нервных клеток. Печень является практически единственным органом, поддерживающим уровень фосфолипидов в крови. Холестерин и другие стероиды могут поступать с пищей или синтезироваться в организме. Основным местом синтеза холестерина является печень.
В жировой ткани нейтральный жир депонируется виде триглицеридов.
Образование жиров из углеводов. Избыточное употребление углеводов с пищей приводит к отложению жира в организме. В норме у человека 25—30% углеводов пищи превращается в жиры.
Образование жиров из белков. Белки являются пластическим материалом. Только при чрезвычайных обстоятельствах белки используются для энергетических целей. Превращение белка в жирные кислоты происходит, вероятнее всего, через образование углеводов.
Обмен углеводов. Биологическая роль углеводов для организма человека определяется прежде всего их энергетической функцией. Энергетическая ценность 1 г углеводов составляет 16,7 кДж (4,0 ккал). Углеводы являются непосредственным источником энергии для всех клеток организма, выполняют пластическую и опорную функции.
Суточная потребность взрослого человека в углеводах составляет около 0,5 кг. Основная часть их (около 70%) окисляется в тканях до воды и углекислого газа. Около 25—28% пищевой глюкозы превращается в жир и только 2—5% ее синтезируется в гликоген — резервный углевод организма.
Единственной формой углеводов, которая может всасываться, являются моносахара. Они всасываются главным образом в тонком кишечнике, током крови переносятся в печень и к тканям. В печени из глюкозы синтезируется гликоген. Этот процесс носит название гликогенеза. Гликоген может распадаться до глюкозы. Это явление называют гликогенолизом. В печени возможно новообразование углеводов из продуктов их распада (пировиноградной или молочной кислоты), а также из продуктов распада жиров и белков (кетокислот), что обозначается как гликонеогенез. Гликогенез, гликогенолиз и гликонеогенез — тесно взаимосвязанные и протекающие в печени процессы, обеспечивающие оптимальный уровень сахара крови.
В мышцах, так же как и в печени, синтезируется гликоген. Распад гликогена является одним из источников энергии мышечного сокращения. При распаде мышечного гликогена процесс идет до образования пировиноградной и молочной кислот. Этот процесс называют гликолизом. В фазе отдыха из молочной кислоты в мышечной ткани происходит ре-синтез гликогена.
Головной мозг содержит небольшие запасы углеводов и нуждается в постоянном поступлении глюкозы. Глюкоза в тканях мозга преимущественно окисляется, а небольшая часть ее превращается в молочную кислоту. Энергетические расходы мозга покрываются исключительно за счет углеводов. Снижение поступления в мозг глюкозы сопровождается изменением обменных процессов в нервной ткани и нарушением функций мозга.
Образование углеводов из белков и жиров (гликонеогенез). В результате превращения аминокислот образуется пировиноградная кислота, при окислении жирных кислот — ацетилкоэнзим А, который может превращаться в пировиноградную кислоту — предшественник глюкозы. Это наиболее важный общий путь биосинтеза углеводов.
Между двумя основными источниками энергии — углеводами и жирами — существует тесная физиологическая взаимосвязь. Повышение содержания глюкозы в крови увеличивает биосинтез триглицеридов и уменьшает распад жиров в жировой ткани. В кровь меньше поступает свободных жирных кислот. Если возникает гипогликемия, то процесс синтеза триглицеридов тормозится, ускоряется распад жиров и в кровь в большом количестве поступают свободные жирные кислоты.