
- •Конспект лекций по курсу Системы автоматического управления процессами сварки
- •Список сокращений
- •Введение
- •1. Основы электротехники и электроники
- •1.1. Электрический ток. Законы и общие понятия
- •1.1.1. Сила тока
- •1.1.2. Эдс и напряжение
- •1.1.3. Закон Ома
- •1.1.4. Электрическая работа. Мощность. Закон Джоуля-Ленца
- •1.1.5. Защита проводов их от перегрузок
- •1.2. Электромагнетизм
- •1.2.1. Магнитное поле
- •1.2.2. Магнитная индукция. Характеристики магнитного поля
- •1.2.3. Перемагничивание и коэрцитивная сила
- •1.2.4. Закон электромагнитной индукции
- •1.2.5. Индуктивность катушки
- •1.2.6. Эдс самоиндукции
- •1.3. Основные понятия переменного тока
- •2 Конструктивные элементы, используемые при производстве сварочного оборудования
- •2.1 Сварочные трансформаторы
- •2.1.1 Трансформаторы с нормальным магнитным рассеянием
- •С нормальным рассеянием
- •2.1.2 Трансформаторы с увеличенным магнитным рассеянием
- •2.1.3 Конструкции трансформаторов для сварочных выпрямителей
- •Импульсные трансформаторы для инверторных источников
- •2.1.4 Регулирование силы сварочного тока
- •2.2 Дроссели. Использование дросселей в сварочном производстве. Регулирование сварочного тока с помощью дросселей
- •Трансформатор в составе с индуктивностью и емкостью
- •2.3 Вентили (диоды). Использование диодов в сварочном производстве
- •Схемы выпрямления
- •2.4 Тиристоры. Использование тиристоров в сварочном производстве
- •Свойства тиристора в закрытом состоянии
- •Принцип отпирания с помощью управляющего электрода
- •2.5 Транзисторы. Использование транзисторов в сварочном производстве
- •3. Источник питания для дуговой сварки
- •3.1 Источники для ручной сварки покрытыми электродами
- •3.2 Источники для механизированной сварки плавящимся электродом в защитном газе
- •3.3 Источники для механизированной сварки под флюсом
- •3.4 Обозначения, классификация источников и предъявляемые к ним требования
- •4.6 Циклоконверторный трансформатор
- •3.5 Трансформаторы с фазовым управлением. Принципиальная схема и регулирование режима в тиристорном трансформаторе
- •3.7 Принцип действия и режимы инверторного источника
- •3.7.1 Транзисторный инверторный источник
- •4. Датчики. Использование датчиков в сварочном производстве
- •4.1 Датчики. Принцип работы датчиков
- •4.1.1 Датчики температуры
- •4.1.2 Датчики давления
- •4.1.3 Датчики расхода и скорости
- •4.1.5 Газовые датчики
- •4.1.6 Датчики магнитного поля
- •4.1.7 Оптические датчики
- •3.1.8 Датчики положения
- •4.1.9 Датчики ик-излучения
- •4.2 Применение датчиков в сварочном производстве
- •4.2.2 Способы контроля величины проплавления с обратной стороны свариваемого изделия
- •4.2.3 Следящие системы с копирными датчиками прямого и непрямого действия
- •4.2.4 Системы непрямого действия с бесконтактными датчиками
- •4.2.4.1 Следящие системы с электромагнитными датчиками.
- •4.2.4.2 Использование сварочной дуги в качестве бесконтактного датчика
- •4.2.4.3 Системы с дуговыми сенсорами
- •4.2.4.4 Следящие системы с оптико-электронными датчиками
- •5. Общая характеристика систем регулирования и управления объектами сварки
- •5.1 Объект управления и регулирования
- •5.2 Основные типы систем автоматического регулирования и управления
- •5.2.1. Системы автоматики
- •5.2.2. Системы автоматического регулирования
- •5.2.3. Непрерывное, релейное и импульсное регулирование
- •5.2.4. Системы связного и несвязного регулирования
- •X1(t), x2(t) — регулируемые величины; y1(t), y2(t) — регулирующие воздействия; г1(t), г2(t) — сигналы обратной связи; Iд(t), Uд(t) — ток и напряжение дуги;
- •5.2.5. Системы управления с математической моделью
- •5.2.6. Микропроцессорные системы автоматического управления
- •5 Управление процессами и оборудованием при дуговой сварке
- •5.1 Структура сварочного контура и возмущающие воздействия
- •5.2. Электрические характеристики сварочного контура
- •5.3 Динамические свойства источника
- •5.4 Начальное зажигание дуги
- •5.5 Принципиальная устойчивость системы «источник—дуга»
- •5.6 Устойчивость при сварке с короткими замыканиями
- •5.7 Стабильность параметров режима сварки
- •5.8 Автоматическое регулирование параметров режима сварки
- •5.9 Управление переносом электродного металла
- •5.10 Управление формированием сварного шва
- •5.11 Системы управления сварочными источниками
- •5.12 Процесс stt (Surface Tension Technology) сварки
- •5.13 Процесс смт (Cold Metal Transfer) сварки
- •5.14 Технология высокопроизводительной сварки (high-speed)
- •5.15 Трансформатор с импульсным стабилизатором
- •5.16 Технологическая характеристика и особенности управления сварочными источниками питания неплавящимися электродами
- •Iпp, Io6p — ток импульсов прямой и обратной полярности; tnp, to6p — время импульса прямой и обратной полярности
- •Автоматизация и механизация tig (Tungsten Inert Gas) сварки
- •6 Системы управления контактной сваркой
- •6.1 Машины для контактной сварки
- •6.2 Особенности протекания процессов при точечной и шовной сварке
- •6.3 Типы и основные компоненты систем программного управления
- •6.4 Разновидности систем программного управления
- •6.5 Системы автоматического регулирования электрических параметров режима сварки
- •6.6 Разновидности способов и особенности протекания процессов стыковой сварки
- •6.7 Автоматическое управление предварительным подогревом при стыковой сварке
- •6.8 Системы программного управления процессом оплавления при стыковой сварке
- •Раздел 2 Основы механизации и автоматизации сварочного производства
- •1. Основные пути автоматизации производственных процессов их назначение и преимущества
- •1.1. Понятия и определения, используемые в производственных процессах
- •1.2. Типы и виды производства
- •2. Мероприятия направленные на повышение производительности труда и эффективности производства
- •3. Проектирование сварных конструкций
- •3.1 Особенности проектирования технологических процессов в условиях автоматизированного производства.
- •3.2 Рациональное проектирование и технологичность сварных конструкций
- •4. Классификация сварных конструкций.
- •4.1 Балки и колонны
- •4.2 Балочные конструкции
- •4.3 Решетчатые конструкции
- •4.4 Оболочковые конструкции
- •4.5 Корпусные транспортные конструкции
- •4.6 Детали машин и приборов
- •5. Механизмы и приспособления используемые при сварке
- •5.1 Основные технологические требования, предъявляемые к сборочно-сварочной оснастке
- •5.2 Деформации в сварных металлоконструкциях и способы их устранения
- •5.3. Транспортирующие механизмы
- •5.4 Заготовительные операции
- •6. Силовые механизмы сборочно-сварочных приспособлений
- •6.1 Механические зажимы
- •Зажимные патроны
- •6.2. Электромеханические зажимные устройства
- •6.3. Пневматические устройства
- •6.4. Накладные кондукторы
- •6.5. Магнитные зажимы
- •Сварочные столы
- •5.5. Кантователи, вращатели, манипуляторы и позиционеры
- •Вращатели
- •Роликовые вращатели
- •Двухстоечные вращатели-позиционеры
- •Манипуляторы
- •Манипуляторы-позиционеры
- •Колыбельные вращатели-позиционеры
- •Сварочные колоны
- •Сварочные колонны большой грузоподъемности
- •Технические характеристики сварочных колонн фирмы kistler Gmbh серии 3/rmb hd
- •5.6. Сварочные роботы
- •Сварочные автоматы
- •7. Применение средств автоматизации при изготовлении сварных конструкций
- •7.1 Изготовление сварных балок
- •7.2 Выполнение стыков балок и стержней
- •7.3 Изготовление рамных конструкций
- •7.4 Изготовление решетчатых конструкций
- •7.5 Изготовление конструкций оболочкового типа
- •1, 2, 3,... — Последовательность сборки листов
- •7.6 Сосуды, работающие под давлением
- •7.6.1 Сварка тонкостенных сосудов
- •7.6.2 Сварка сосудов со средней толщиной стенки
- •7.6.3 Сварка толстостенных сосудов
- •7.6.4 Сварка многослойных сосудов
- •7.7 Изготовление сварных труб
- •7.7.1 Изготовление прямошовных сварных труб
- •Высокочастотная сварка труб
- •7.7.2 Изготовление сварных труб со спиральным швом
- •7.8 Сварка стыков труб
- •7.8.1 Сварка поворотных стыков труб
- •7.8.2 Сварка неповоротных стыков труб
- •Оборудование для сварки труб и приварки отводов, фланцев/трубные вращатели (кнр)
- •Заключение
- •Приложение а Схемы зажимных механизмов
- •Приложение б Допустимые усилий р (кгс), создаваемые винтовыми зажимами
- •Приложение в
- •Список использованных источников
7.6 Сосуды, работающие под давлением
При изготовлении сосудов приходится выполнять прямолинейные, кольцевые и круговые стыковые швы. В зависимости от толщины стенок приемы выполнения каждого из них имеют свои особенности; разнообразна и применяемая оснастка.
7.6.1 Сварка тонкостенных сосудов
Швы тонкостенных сосудов, как правило, выполняют в среде защитных газов. Сборку рекомендуется производить с помощью зажимных приспособлений — надежное прижатие свариваемых кромок к подкладке позволяет выполнять одностороннюю сварку в приспособлении без прихватки. При сборке и сварке прямолинейных швов между листами и продольных швов обечаек равномерное и плотное прижатие кромок к подкладке осуществляется зажимными приспособлениями клавишного типа. Усилие прижатия обычно составляет 300–700 Н на 1 см длины шва и создается гидравлическим или пневматическим устройством (рисунок 110). На верхнем основании жесткого каркаса закреплен ложемент 6 с подкладкой 5. Прижим свариваемых кромок осуществляют раздельно для каждого листа через набор клавиш 3, укрепленных на балках 1. Давление на клавиши передается пневмошлангами 2 и регулируется редуктором. Установка и прижатие листов производятся в такой последовательности: поворотом эксцентрикового валика 7 из подкладки выдвигаются фиксаторы 4, после чего до упора в них (справа по рисунку) заводится листовая заготовка и зажимается подачей воздуха в шланг. Затем фиксаторы убираются и до упора в кромку заготовки устанавливается другая заготовка и зажимается подачей воздуха в шланг 2.
Рисунок 110 – Приспособление для сборки и сварки прямолинейных стыков тонколистовых элементов
При сборке и сварке продольных стыков обечаек основание приспособления выполняют в виде консоли, прижимные балки с клавишами закрепляют к ним одним концом жестко, а другим концом — посредством откидных болтов.
Продольные швы вызывают нарушение прямолинейности образующих тонкостенных обечаек и уменьшение кривизны в зоне шва в поперечном сечении (рисунок 111). Для исправления таких сварочных деформаций широко используют прокатку роликами.
Рисунок 111 – Характер деформаций обечайки от продольного шва
При выполнении кольцевых стыков тонкостенных сосудов из материалов, мало чувствительных к концентрации напряжений, используют остающиеся подкладные кольца, которые облегчают центровку кромок и их одностороннюю сварку. Для ряда высокопрочных материалов такой прием оказывается неприемлемым. В этом случае кольцевые стыки собирают и сваривают на съемных подкладках разжимных колец. Однако надо учитывать, что из-за подогрева кромок впереди сварочной дуги они расширяются и отходят от подкладного кольца в радиальном направлении, что может приводить к смещению кромок или образованию домика. В тонкостенных сосудах, работающих под давлением, смещение кромок в стыковом шве — опасный концентратор, и при изготовлении необходимо принимать меры по их предотвращению или устранению. Для прижатия кромок можно применять наружные стяжные ленты, однако их приходится располагать на некотором расстоянии от оси стыка и перемещения предотвращаются лишь частично. Более эффективно оказывается прижатие кромок к подкладкам роликом, перекатывающимся по поверхности стыка непосредственно перед сварочной дугой. Прижим не дает возможности кромкам оторваться от поверхности подкладного кольца в месте образования сварного соединения. Приспособление для прижатия кромок обечаек (рисунок 112) закреплено на консоли сварочной головки. Прижимные ролики опираются на обе свариваемые кромки, выравнивая их и прижимая к подкладному кольцу с помощью пружины.
1 — прижимные ролики; 2 — присадочная проволока
Рисунок 112 – Схема приспособления для прижатия кромок к подкладному кольцу перед сварочной головкой
Для сварки стыка обечаек можно использовать также схему, при которой стык выполняется изнутри обечайки. В этом случае зона кольцевого шва охватывается жестким бандажом, вращающимся при сварке вместе с изделием, а сварка первого прохода выполняется изнутри обечайки. Напряжения сжатия, возникающие в зоне нагрева, стремясь увеличить длину свободной кромки стыка, прижимают ее к наружному кольцу бандажа.
Деформации от кольцевого шва для большинства материалов уменьшают диаметр обечайки. Такое сокращение зоны шва хорошо поддается исправлению прокаткой роликами. При сварке алюминиевых сплавов диаметр обечайки в зоне кольцевого шва, выполненного на подкладном кольце, может оказаться не только не меньше, но даже больше первоначального размера. Рассмотренный выше прием прижатия кромок к подкладному кольцу роликом, расположенным перед сварочной головкой (см. рисунок 112), позволяет практически полностью предотвратить такое увеличение диаметра при сварке стыков обечаек из алюминиевых сплавов.
Особое внимание приходится уделять конструктивному оформлению и технологии выполнения замыкающего кольцевого шва сосуда. При наличии лазовых отверстий или патрубков значительного размера внутрь сосуда можно ввести разборное разжимное кольцо. В этом случае одностороннюю сварку замыкающего шва выполняют на съемной подкладке по обычной технологии. Задача усложняется, если размеры отверстий патрубков малы. Если остающееся подкладное кольцо является слишком резким концентра- тором и его использовать нельзя, то приходится осуществлять одностороннюю сварку на весу. Соединение элементов арматуры (фланцы, штуцера) со стенкой сосуда обычно делают стыковым, допуская соединение угловыми швами или рельефной сваркой только для материалов, мало чувствительных к концентрации напряжений. Стыковые круговые швы выполняют односторонней сваркой на подкладке с канавкой. Вид сборочно-сварочной оснастки и конструктивное оформление стыка определяются необходимостью плотного прижатия кромок к подкладке, предотвращения их перемещений в процессе сварки и устранения сварочных деформаций, приводящих к местному искажению формы оболочки в зоне шва. В зависимости от формы поверхности стенки сосуда (сферической или цилиндрической), материала и толщины свариваемых элементов конструктивно-технологические решения могут быть различными. Например, при вварке фланца в сферический сосуд целесообразно использовать соединение с буртиком, показанное на рисунке 113. Технологический буртик предназначен для передачи усилия прижатия фланца на оболочку, обеспечения их соосности и повышения жесткости кромки фланца. Наличие буртика позволяет упростить прижимное приспособление, так как усилие прижатия прикладывается только к фланцу, и предотвратить смещение кромок в процессе сварки, а также уменьшить местные искажения формы оболочки, возникающие в результате усадки кругового шва.
Рисунок 113 – Сборка фланца с оболочкой при наличии технологического буртика на фланце
При небольших размерах сосуда или того элемента, в который вваривается деталь арматуры, сварку кругового шва целесообразно осуществлять неподвижной сварочной головкой при вращении приспособления с закрепленным свариваемым стыком. При вварке арматуры в узел значительных размеров круговой шов более удобно выполнять сварочной головкой, перемещающейся по поверхности элемента оболочки, закрепленного неподвижно.
В крупносерийном производстве тонкостенных сосудов (тормозные резервуары, пропановые баллоны) для выполнения сборочных и сварочных операций применяют специальные полуавтоматические установки. В них для сборки и сварки продольного стыка обечайки необходимо выполнять следующие операции: приемку обечайки, ориентирование стыка, прижатие его к подкладке симметрично относительно формующей проплав канавки, выполнение шва, освобождение обечайки от зажатия и ее сброс.
Например, полуавтоматическая установка, предназначенная для сборки и сварки обечайки тормозного баллона с днищами, работает на ЗИЛе. Отбортовка днища имеет конусную поверхность, что облегчает механизацию сборочной операции. На рисунке 114, а можно видеть расположение захватов, закрепленных на валу с шаговым поворотом на 90°. Ориентирование и подача обечайки и двух днищ на позицию I производится оператором, остальные операции выполняются автоматически. Захваты 1 зажимают обечайку, а пневматические цилиндры с магнитными улавливателями 2 обеспечивают запрессовку днищ в обечайку (рисунок 114, б). Собранный сосуд подается на сварочную позицию 11, где он освобождается от зажатия после того, как захватывается с торцов деталями вращателя 4 (рисунок 114, в). Совмещение электродов сварочных головок 3 с плоскостью вращения каждой ступеньки нахлесточного соединения осуществляется искателем, выключающим движение головки в осевом направлении в момент совпадения ее со ступенькой нахлестки. Сварку осуществляют за один оборот с некоторым заданным перекрытием. Окончание сварки служит сигналом для включения захвата 1, освобождения от вращателя 4 и совершения шагового поворота. Сброс сосуда достигается раскрытием захвата под действием силы тяжести на позиции 111 (рисунок 114, а).
в г
а – расположение захватов; б – схема выполнения сборочной операции; в – схема выполнения сварочной операции, в – станок для сварки кольцевых швов, г – станок для сварки продольных швов
Рисунок 114 – Станок-полуавтомат для сборки и сварки баллонов