
- •Конспект лекций по курсу Системы автоматического управления процессами сварки
- •Список сокращений
- •Введение
- •1. Основы электротехники и электроники
- •1.1. Электрический ток. Законы и общие понятия
- •1.1.1. Сила тока
- •1.1.2. Эдс и напряжение
- •1.1.3. Закон Ома
- •1.1.4. Электрическая работа. Мощность. Закон Джоуля-Ленца
- •1.1.5. Защита проводов их от перегрузок
- •1.2. Электромагнетизм
- •1.2.1. Магнитное поле
- •1.2.2. Магнитная индукция. Характеристики магнитного поля
- •1.2.3. Перемагничивание и коэрцитивная сила
- •1.2.4. Закон электромагнитной индукции
- •1.2.5. Индуктивность катушки
- •1.2.6. Эдс самоиндукции
- •1.3. Основные понятия переменного тока
- •2 Конструктивные элементы, используемые при производстве сварочного оборудования
- •2.1 Сварочные трансформаторы
- •2.1.1 Трансформаторы с нормальным магнитным рассеянием
- •С нормальным рассеянием
- •2.1.2 Трансформаторы с увеличенным магнитным рассеянием
- •2.1.3 Конструкции трансформаторов для сварочных выпрямителей
- •Импульсные трансформаторы для инверторных источников
- •2.1.4 Регулирование силы сварочного тока
- •2.2 Дроссели. Использование дросселей в сварочном производстве. Регулирование сварочного тока с помощью дросселей
- •Трансформатор в составе с индуктивностью и емкостью
- •2.3 Вентили (диоды). Использование диодов в сварочном производстве
- •Схемы выпрямления
- •2.4 Тиристоры. Использование тиристоров в сварочном производстве
- •Свойства тиристора в закрытом состоянии
- •Принцип отпирания с помощью управляющего электрода
- •2.5 Транзисторы. Использование транзисторов в сварочном производстве
- •3. Источник питания для дуговой сварки
- •3.1 Источники для ручной сварки покрытыми электродами
- •3.2 Источники для механизированной сварки плавящимся электродом в защитном газе
- •3.3 Источники для механизированной сварки под флюсом
- •3.4 Обозначения, классификация источников и предъявляемые к ним требования
- •4.6 Циклоконверторный трансформатор
- •3.5 Трансформаторы с фазовым управлением. Принципиальная схема и регулирование режима в тиристорном трансформаторе
- •3.7 Принцип действия и режимы инверторного источника
- •3.7.1 Транзисторный инверторный источник
- •4. Датчики. Использование датчиков в сварочном производстве
- •4.1 Датчики. Принцип работы датчиков
- •4.1.1 Датчики температуры
- •4.1.2 Датчики давления
- •4.1.3 Датчики расхода и скорости
- •4.1.5 Газовые датчики
- •4.1.6 Датчики магнитного поля
- •4.1.7 Оптические датчики
- •3.1.8 Датчики положения
- •4.1.9 Датчики ик-излучения
- •4.2 Применение датчиков в сварочном производстве
- •4.2.2 Способы контроля величины проплавления с обратной стороны свариваемого изделия
- •4.2.3 Следящие системы с копирными датчиками прямого и непрямого действия
- •4.2.4 Системы непрямого действия с бесконтактными датчиками
- •4.2.4.1 Следящие системы с электромагнитными датчиками.
- •4.2.4.2 Использование сварочной дуги в качестве бесконтактного датчика
- •4.2.4.3 Системы с дуговыми сенсорами
- •4.2.4.4 Следящие системы с оптико-электронными датчиками
- •5. Общая характеристика систем регулирования и управления объектами сварки
- •5.1 Объект управления и регулирования
- •5.2 Основные типы систем автоматического регулирования и управления
- •5.2.1. Системы автоматики
- •5.2.2. Системы автоматического регулирования
- •5.2.3. Непрерывное, релейное и импульсное регулирование
- •5.2.4. Системы связного и несвязного регулирования
- •X1(t), x2(t) — регулируемые величины; y1(t), y2(t) — регулирующие воздействия; г1(t), г2(t) — сигналы обратной связи; Iд(t), Uд(t) — ток и напряжение дуги;
- •5.2.5. Системы управления с математической моделью
- •5.2.6. Микропроцессорные системы автоматического управления
- •5 Управление процессами и оборудованием при дуговой сварке
- •5.1 Структура сварочного контура и возмущающие воздействия
- •5.2. Электрические характеристики сварочного контура
- •5.3 Динамические свойства источника
- •5.4 Начальное зажигание дуги
- •5.5 Принципиальная устойчивость системы «источник—дуга»
- •5.6 Устойчивость при сварке с короткими замыканиями
- •5.7 Стабильность параметров режима сварки
- •5.8 Автоматическое регулирование параметров режима сварки
- •5.9 Управление переносом электродного металла
- •5.10 Управление формированием сварного шва
- •5.11 Системы управления сварочными источниками
- •5.12 Процесс stt (Surface Tension Technology) сварки
- •5.13 Процесс смт (Cold Metal Transfer) сварки
- •5.14 Технология высокопроизводительной сварки (high-speed)
- •5.15 Трансформатор с импульсным стабилизатором
- •5.16 Технологическая характеристика и особенности управления сварочными источниками питания неплавящимися электродами
- •Iпp, Io6p — ток импульсов прямой и обратной полярности; tnp, to6p — время импульса прямой и обратной полярности
- •Автоматизация и механизация tig (Tungsten Inert Gas) сварки
- •6 Системы управления контактной сваркой
- •6.1 Машины для контактной сварки
- •6.2 Особенности протекания процессов при точечной и шовной сварке
- •6.3 Типы и основные компоненты систем программного управления
- •6.4 Разновидности систем программного управления
- •6.5 Системы автоматического регулирования электрических параметров режима сварки
- •6.6 Разновидности способов и особенности протекания процессов стыковой сварки
- •6.7 Автоматическое управление предварительным подогревом при стыковой сварке
- •6.8 Системы программного управления процессом оплавления при стыковой сварке
- •Раздел 2 Основы механизации и автоматизации сварочного производства
- •1. Основные пути автоматизации производственных процессов их назначение и преимущества
- •1.1. Понятия и определения, используемые в производственных процессах
- •1.2. Типы и виды производства
- •2. Мероприятия направленные на повышение производительности труда и эффективности производства
- •3. Проектирование сварных конструкций
- •3.1 Особенности проектирования технологических процессов в условиях автоматизированного производства.
- •3.2 Рациональное проектирование и технологичность сварных конструкций
- •4. Классификация сварных конструкций.
- •4.1 Балки и колонны
- •4.2 Балочные конструкции
- •4.3 Решетчатые конструкции
- •4.4 Оболочковые конструкции
- •4.5 Корпусные транспортные конструкции
- •4.6 Детали машин и приборов
- •5. Механизмы и приспособления используемые при сварке
- •5.1 Основные технологические требования, предъявляемые к сборочно-сварочной оснастке
- •5.2 Деформации в сварных металлоконструкциях и способы их устранения
- •5.3. Транспортирующие механизмы
- •5.4 Заготовительные операции
- •6. Силовые механизмы сборочно-сварочных приспособлений
- •6.1 Механические зажимы
- •Зажимные патроны
- •6.2. Электромеханические зажимные устройства
- •6.3. Пневматические устройства
- •6.4. Накладные кондукторы
- •6.5. Магнитные зажимы
- •Сварочные столы
- •5.5. Кантователи, вращатели, манипуляторы и позиционеры
- •Вращатели
- •Роликовые вращатели
- •Двухстоечные вращатели-позиционеры
- •Манипуляторы
- •Манипуляторы-позиционеры
- •Колыбельные вращатели-позиционеры
- •Сварочные колоны
- •Сварочные колонны большой грузоподъемности
- •Технические характеристики сварочных колонн фирмы kistler Gmbh серии 3/rmb hd
- •5.6. Сварочные роботы
- •Сварочные автоматы
- •7. Применение средств автоматизации при изготовлении сварных конструкций
- •7.1 Изготовление сварных балок
- •7.2 Выполнение стыков балок и стержней
- •7.3 Изготовление рамных конструкций
- •7.4 Изготовление решетчатых конструкций
- •7.5 Изготовление конструкций оболочкового типа
- •1, 2, 3,... — Последовательность сборки листов
- •7.6 Сосуды, работающие под давлением
- •7.6.1 Сварка тонкостенных сосудов
- •7.6.2 Сварка сосудов со средней толщиной стенки
- •7.6.3 Сварка толстостенных сосудов
- •7.6.4 Сварка многослойных сосудов
- •7.7 Изготовление сварных труб
- •7.7.1 Изготовление прямошовных сварных труб
- •Высокочастотная сварка труб
- •7.7.2 Изготовление сварных труб со спиральным швом
- •7.8 Сварка стыков труб
- •7.8.1 Сварка поворотных стыков труб
- •7.8.2 Сварка неповоротных стыков труб
- •Оборудование для сварки труб и приварки отводов, фланцев/трубные вращатели (кнр)
- •Заключение
- •Приложение а Схемы зажимных механизмов
- •Приложение б Допустимые усилий р (кгс), создаваемые винтовыми зажимами
- •Приложение в
- •Список использованных источников
4.2 Балочные конструкции
Рамы представляют собой объемную пространственную конструкцию, предназначенную для объединения отдельных деталей и механизмов в единый агрегат. Одно из главных требований, предъявляемых к рамам, — жесткость конструкции. Поэтому входящие в состав сварной рамы балочные заготовки соединяют друг с другом либо непосредственно, либо с помощью вспомогательных элементов жесткости. Размеры рам и их конструктивное оформление весьма разнообразны, различны и методы получения балочных заготовок. Так, рамы клетей мощных прокатных станов собирают и сваривают из балочных заготовок в виде массивных стальных отливок (рисунок 10).
Рисунок 10 – Рама вертикальной клети
В рамах тележек железнодорожного подвижного состава нередко также наиболее сложные элементы выполняют в виде стальной отливки с относительно тонкими стенками. Примером этому может служить рама тележки электровоза ВЛ-80 (рисунок 11), состоящая из боковин 1, литого шкворневого бруса 2 и двух концевых брусьев 3, где боковины и концевые брусья представляют собой сварные балки коробчатого сечения. Более крупные рамы обычно собирают из профильных и листовых элементов, подкрепляя их во многих местах ребрами жесткости.
Рисунок 11 – Рама двухосной тележки электровоза
4.3 Решетчатые конструкции
Общим для решетчатых конструкций является наличие в узлах соединений нескольких отдельных стержней того или иного сечения.
Фермы, как и балки, работают на поперечный изгиб. Конструктивные формы балок проще, однако при достаточно больших пролетах применение ферм оказывается более экономичным. Характерные схемы решеток ферм показаны на рисунок 12. Треугольная (а) и раскосная (б) схемы являются основными. Фермы, воспринимающие нагрузки по верхнему или нижнему поясу, с целью уменьшения длины панели изготовляют по схемам, изображенным на рисунок 12, в, г. Иногда применяют безраскосные фермы с жесткими узлами (рисунок 12, д). По очертанию поясов фермы могут быть с параллельными поясами или с поясами, образованными ломаной линией (рисунок 12, е). По назначению фермы разделяют на стропильные и мостовые.
Рисунок 12 – Схемы решеток ферм
Стропильные фермы работают при статической нагрузке. В качестве стержней используют главным образом прокатные и значительно реже гнутые замкнутые сварные профили и трубы.
В общем объеме производства фермы из парных прокатных уголков составляют около 90 %. Стержни в узлах соединяют либо непосредственно, либо с помощью вспомогательных элементов главным образом дуговой сваркой. Перспективно применение точечной контактной сварки. Из-за статического характера нагружения стропильных ферм чувствительность к концентрации напряжений в точечных соединениях мала; в то же время контактная сварка обеспечивает значительное повышение производительности сборочно-сварочных работ.
Мостовые фермы работают при переменных нагрузках и нередко при низких климатических температурах, что определяет высокую чувствительность их сварных соединений к концентрации напряжений. Поэтому в процессе проектирования и изготовления сварных мостовых пролетных строений особое внимание уделяют предотвращению и устранению концентрации напряжений в сварных соединениях и узлах.
Решетчатые пролетные строения с ездой понизу применяют главным образом для железнодорожных мостов. Для автодорожных мостов более характерно использование стальных и сталежелезобетонных слошностенчатых пролетных строений с ездой поверху.
Пространственные решетчатые конструкции башенного типа (радиомачты, радиобашни, буровые вышки и т.д.) вследствие большой высоты подвергаются значительным ветровым нагрузкам, поэтому их изготовляют преимущественно из трубчатых элементов. Поскольку размеры этих конструкций превышают габарит железнодорожного подвижного состава, их монтируют из сваренных на заводе секций. Основные стойки башни располагаются по углам граней секций и являются поясами плоских ферм. Стойки составляются из отдельных труб стандартной длины и через приваренные к их торцам фланцы соединяются между собой болтами.
Мачты линий электропередачи являются пространственными решетчатыми конструкциями, но для их изготовления используют прокат в виде уголков. К решетчатым конструкциям следует отнести и сварные элементы арматуры железобетона: сетки, плоские и пространственные каркасы. Сетки из взаимно перпендикулярных стержней круглого или периодического профиля, соединяемых контактной сваркой, могут быть рулонные (рисунок 13, а) и плоские (рисунок 13, б). Их назначение — армирование плит перекрытий, перегородок, покрытия дорог, аэродромов, каналов и других элементов конструкций и сооружений используют в балочных перекрытиях (рисунок 14), они состоят из продольной арматуры (поясов) и соединительной решетки в виде отдельных стержней или непрерывной змейки. Плоские каркасы, как и сетки, сваривают на точечных контактных машинах. Пространственные каркасы обычно имеют поясные продольные стержни и соединительную решетку либо в виде отдельных стержней, располагаемых по каждой из граней, либо в виде непрерывной проволоки, навиваемой по спирали.
Рисунок 13 – Виды сварных сеток
Рисунок 14 – Армирование балок плоскими сварными каркасами