
- •1. Функция нескольких переменных
- •2. Частное и полное приращение
- •4. Частные производные Функции 2-х переменных
- •5. Полный дифференциал функции. Функции 2-х переменных
- •6. Частные производные высших порядков. Функции двух переменных
- •7. Градиент функции трех переменных
- •8. Производная функции направления
- •9. Экстремум функции двух переменных. Необходимое и достаточное условие экстремума
- •10. Определение первообразной. Теорема о множестве всех первообразных
- •11. Неопределенный интеграл и его свойства
- •12. Метод непосредственного интегрирования
- •13. Метод замены переменной
- •14. Интегрирование по частям
- •15. Простейшие рациональные дроби и их интегрирование
- •16. Разложение правильной дроби на простейшие
- •17. Интегрирование рациональных дробей
- •18. Универсальная тригонометрическая подстановка
- •19. Интегрирование тригонометрических функций вида Sin ax*Cosbx
- •20. Интегрирование тригонометрических функций вида
- •21. Интегрирование иррациональных функций с помощью тригонометрических подстановок
- •22. Интегрировонае простейших иррациональных функция
- •Положим . Тогда
- •23. Задача о вычислении площади криволинейной трапеции
- •24. Понятие интегральной суммы. Определенный интеграл
- •25. Свойство определенного интеграла
- •26. Методы вычисления определенного интеграла. Формула Ньютона – Лейбница
- •27. Замена переменной в определенном интеграле.
- •28.Интегрирование по частям при вычислении определенного интеграла.
- •29. Вычисление площадей плоских фигур
- •30. Несобственный интеграл 1 рода
- •31. Несобственный интеграл 2 рода
- •32. Геометрческие приложения определенного интеграла
- •33. Приближенное вычисление определенных интегралов
- •34. Определение двойного интеграла. Свойства двойного интеграла
- •36. Комплексная плоскость. Арифметические действия над комплексными числами
- •37. Тригонометрические и показательные формы комплексного числа
- •Показательная форма комплексного числа
- •Если обозначить комплексное число , у которого , а , через , то есть , то из (1.3) получимпоказательную форму записи комплексного числа:
- •39. Неполные дифференциальные уравнения и методы их решения.
- •40 Дифференциальные уравнения с разделяющимися переменными
- •41 Однородные дифференциальные уравнения
- •42 Линейные дифференциальные уравнения первого порядка с правой частью
- •43. Однородные дифференциальные уравнения второго порядка
- •44. Дифференциальные уравнения второго порядка с правой частью
- •45. Числовые ряды . Основные понятия. Сходимость ряда. Необходимый признак сходимости
- •46. Гармоничный ряд. Ряд арифметической прогрессии.
- •47. Ряды с положительными членами. Признаки сходимости
- •48. Ряды с членами произвольного знака. Признаки сходимости
- •49. Функциональные ряды. Основные понятия. Область сходимости
- •50. Степенной ряд. Признак сходимости. Область сходимости
- •51. Ряд маклорна и разложение функций в этот ряд
- •52. Ряд Тейлора и разложение функции в этот ряд
- •53. Приминение рядов для вычисления определенных интегралов
18. Универсальная тригонометрическая подстановка
Рассмотрим
интегрирование выражений полностью
зависящих от тригонометрических
функций, над которыми выполняются лишь
арифметические операции. Такие выражения
называются рациональными функциями
от тригонометрических функций и в
данном случае обозначаются
.
Например,
,
,
.
В
то же время функция
рациональной
не является.
Теорема. Интеграл
вида
с
помощью подстановки
преобразуется
в интеграл от рациональной дроби.
Для
доказательства выразим
,
и
через
:
;
;
.
19. Интегрирование тригонометрических функций вида Sin ax*Cosbx
Интегралы
вида
находятся с помощью тригонометрических формул
В
результате проведенных
преобразований
,
и
превратились
в рациональные дроби от
.
Подставляя их в исходный интеграл,
получаем:
.
В
данном выражении рациональные дроби
подставлены в рациональную функцию.
Так как над ними выполняются лишь
арифметические операции, то в результате
получается также рациональная дробь.
Итак, рациональную функцию от
тригонометрических функций можно
проинтегрировать, превратив ее в
рациональную дробь.
Подстановка
,
,
,
называется
универсальной тригонометрической
подстановкой.
20. Интегрирование тригонометрических функций вида
В частных случаях один из показателей (m или n) может равняться нулю.
При интегрировании таких функций используется то, что чётную степень косинуса можно выразить через синус, а дифференциал синуса равен cos x dx (или чётную степень синуса можно выразить через косинус, а дифференциал косинуса равен – sin x dx).
Следует различать два случая: 1) хотя бы один из показателей m и n нечётный; 2) оба показателя чётные.
Пусть имеет место первый случай, а именно показатель n = 2k + 1 – нечётный. Тогда, учитывая, что
получим
Подынтегральное выражение представлено в таком виде, что одна его часть – функция только синуса, а другая – дифференциал синуса. Теперь с помощью замены переменной t = sin x решение сводится к интегрированию многочлена относительно t . Если же только степень m нечётна, то поступают аналогично, выделяя множитель sin x, выражая остальную часть подынтегральной функции через cos x и полагая t = cos x.
Если же оба показателя m и n – чётные, то, используя тригонометрические формулы
понижают показатели степени синуса и косинуса, после чего получится интеграл того же типа, что и выше. Поэтому интегрирование следует продолжать по той же схеме.
21. Интегрирование иррациональных функций с помощью тригонометрических подстановок
Интегралов от тригонометрических функций может быть бесконечно много. Большинство из этих интегралов вообще нельзя вычислить аналитически, поэтому рассмотрим некоторые главнейшие типы функций, которые могут быть проинтегрированы всегда.
Интеграл
вида
.
Здесь R – обозначение некоторой рациональной функции от переменных sinx и cosx.
Интегралы
этого вида вычисляются с помощью
подстановки
.
Эта подстановка позволяет преобразовать
тригонометрическую функцию в
рациональную.
,
Тогда
Таким
образом:
Описанное выше преобразование
называется универсальной
тригонометрической подстановкой.