
- •1. Функция нескольких переменных
- •2. Частное и полное приращение
- •4. Частные производные Функции 2-х переменных
- •5. Полный дифференциал функции. Функции 2-х переменных
- •6. Частные производные высших порядков. Функции двух переменных
- •7. Градиент функции трех переменных
- •8. Производная функции направления
- •9. Экстремум функции двух переменных. Необходимое и достаточное условие экстремума
- •10. Определение первообразной. Теорема о множестве всех первообразных
- •11. Неопределенный интеграл и его свойства
- •12. Метод непосредственного интегрирования
- •13. Метод замены переменной
- •14. Интегрирование по частям
- •15. Простейшие рациональные дроби и их интегрирование
- •16. Разложение правильной дроби на простейшие
- •17. Интегрирование рациональных дробей
- •18. Универсальная тригонометрическая подстановка
- •19. Интегрирование тригонометрических функций вида Sin ax*Cosbx
- •20. Интегрирование тригонометрических функций вида
- •21. Интегрирование иррациональных функций с помощью тригонометрических подстановок
- •22. Интегрировонае простейших иррациональных функция
- •Положим . Тогда
- •23. Задача о вычислении площади криволинейной трапеции
- •24. Понятие интегральной суммы. Определенный интеграл
- •25. Свойство определенного интеграла
- •26. Методы вычисления определенного интеграла. Формула Ньютона – Лейбница
- •27. Замена переменной в определенном интеграле.
- •28.Интегрирование по частям при вычислении определенного интеграла.
- •29. Вычисление площадей плоских фигур
- •30. Несобственный интеграл 1 рода
- •31. Несобственный интеграл 2 рода
- •32. Геометрческие приложения определенного интеграла
- •33. Приближенное вычисление определенных интегралов
- •34. Определение двойного интеграла. Свойства двойного интеграла
- •36. Комплексная плоскость. Арифметические действия над комплексными числами
- •37. Тригонометрические и показательные формы комплексного числа
- •Показательная форма комплексного числа
- •Если обозначить комплексное число , у которого , а , через , то есть , то из (1.3) получимпоказательную форму записи комплексного числа:
- •39. Неполные дифференциальные уравнения и методы их решения.
- •40 Дифференциальные уравнения с разделяющимися переменными
- •41 Однородные дифференциальные уравнения
- •42 Линейные дифференциальные уравнения первого порядка с правой частью
- •43. Однородные дифференциальные уравнения второго порядка
- •44. Дифференциальные уравнения второго порядка с правой частью
- •45. Числовые ряды . Основные понятия. Сходимость ряда. Необходимый признак сходимости
- •46. Гармоничный ряд. Ряд арифметической прогрессии.
- •47. Ряды с положительными членами. Признаки сходимости
- •48. Ряды с членами произвольного знака. Признаки сходимости
- •49. Функциональные ряды. Основные понятия. Область сходимости
- •50. Степенной ряд. Признак сходимости. Область сходимости
- •51. Ряд маклорна и разложение функций в этот ряд
- •52. Ряд Тейлора и разложение функции в этот ряд
- •53. Приминение рядов для вычисления определенных интегралов
39. Неполные дифференциальные уравнения и методы их решения.
Дифференциальное
уравнение первого порядка
называются неполными,
если в нем не содержится (явно)
или сама функция у,
или независимая переменная х.
В
том случае, когда правая часть
дифференциального уравнения не содержит
самой функции у,
оно принимает вид:
или
,
или
.
Отсюда
.
Таким образом, получено общее решение неполного дифференциального уравнения. Фактически это задача об отыскании первообразной функции (т.е. это непосредственно задача неопределенного интеграла).
Во
втором случае, т.е. когда дифференциальное
уравнение имеет вид
,
т.е. в уравнение явно не входит независимая
переменная х.
Дифференциальное
уравнение принимает вид
, т.е. получаем у – как независимую переменную, а х – как функцию от у (фактически это обратная функция по отношению к функции у от х).
Пример
1. Решить
дифференциальное уравнение
-
это дифференциальное уравнение второго
типа. Запишем его в виде
,
откуда - есть искомое решение
.
40 Дифференциальные уравнения с разделяющимися переменными
или
.
Дифференциальные
уравнения
называют уравнениями
с разделенными переменными.
Название этого вида дифференциальных уравнений достаточно показательно: выражения, содержащие переменные x и y, разделены знаком равенства, то есть, находятся по разные стороны от него.
Общее решение дифференциальных уравнений с разделенными переменными можно найти, проинтегрировав обе части равенства: ∫ f(y)dy = ∫ f(x)dx.
В
качестве примеров ОДУ с разделенными
переменными приведем
.
Дифференциальные
уравнения с разделяющимися переменными
приводятся к ОДУ с разделенными
переменными делением обеих частей
уравнения на произведение f2(y)
⋅
g1(x).
То есть, получим
.
Такое преобразование будет эквивалентным,
если одновременно f2(y)
≠ 0 и g1(x)
≠ 0.
Иначе могут потеряться некоторые
решения.
Примерами
ОДУ с разделяющимися переменными
являются
.
Некоторые дифференциальные уравнения можно свести к уравнениям с разделяющимися переменными с помощью замены переменных.
Дифференциальные
уравнения
приводятся
к ОДУ с разделяющимися переменными
подстановкой z
= ax+by.
К примеру, уравнение
с
помощью подстановки z
= 2x+3y преобретает
вид
.
ОДУ
или
преобразуются
к уравнениям с разделяющимися переменными
с помощью замен
или
.
Например, дифференциальное уравнение
после
замены
принимает
вид
.
Некоторые
дифференциальные уравнения следует
немного преобразовать, чтобы можно
провести замену. К примеру, достаточно
разделить на x2 или y2 числитель
и знаменатель правой части дифференциального
уравнения
,
чтобы оно соответствовало
случаям
или
соответственно.
Дифференциальные
уравнения
преобразуются
к только что рассмотренным ОДУ
или
,
если ввести новые переменные
,
где
-
решение системы линейных уравнений
и
провести некоторые преобразования.
Например,
дифференциальное уравнение
после
введения новых переменных
преобразуется
к виду
.
Проводим деление на u числителя
и знаменателя правой части полученного
уравнения и принимаем
.
В результате приходим к уравнению с
разделяющимися переменными
.
В разделе дифференциальные уравнения с разделяющимися переменнымиподробно разобрана теория и приведены подробные решения аналогичных примеров.