
- •1. Функция нескольких переменных
- •2. Частное и полное приращение
- •4. Частные производные Функции 2-х переменных
- •5. Полный дифференциал функции. Функции 2-х переменных
- •6. Частные производные высших порядков. Функции двух переменных
- •7. Градиент функции трех переменных
- •8. Производная функции направления
- •9. Экстремум функции двух переменных. Необходимое и достаточное условие экстремума
- •10. Определение первообразной. Теорема о множестве всех первообразных
- •11. Неопределенный интеграл и его свойства
- •12. Метод непосредственного интегрирования
- •13. Метод замены переменной
- •14. Интегрирование по частям
- •15. Простейшие рациональные дроби и их интегрирование
- •16. Разложение правильной дроби на простейшие
- •17. Интегрирование рациональных дробей
- •18. Универсальная тригонометрическая подстановка
- •19. Интегрирование тригонометрических функций вида Sin ax*Cosbx
- •20. Интегрирование тригонометрических функций вида
- •21. Интегрирование иррациональных функций с помощью тригонометрических подстановок
- •22. Интегрировонае простейших иррациональных функция
- •Положим . Тогда
- •23. Задача о вычислении площади криволинейной трапеции
- •24. Понятие интегральной суммы. Определенный интеграл
- •25. Свойство определенного интеграла
- •26. Методы вычисления определенного интеграла. Формула Ньютона – Лейбница
- •27. Замена переменной в определенном интеграле.
- •28.Интегрирование по частям при вычислении определенного интеграла.
- •29. Вычисление площадей плоских фигур
- •30. Несобственный интеграл 1 рода
- •31. Несобственный интеграл 2 рода
- •32. Геометрческие приложения определенного интеграла
- •33. Приближенное вычисление определенных интегралов
- •34. Определение двойного интеграла. Свойства двойного интеграла
- •36. Комплексная плоскость. Арифметические действия над комплексными числами
- •37. Тригонометрические и показательные формы комплексного числа
- •Показательная форма комплексного числа
- •Если обозначить комплексное число , у которого , а , через , то есть , то из (1.3) получимпоказательную форму записи комплексного числа:
- •39. Неполные дифференциальные уравнения и методы их решения.
- •40 Дифференциальные уравнения с разделяющимися переменными
- •41 Однородные дифференциальные уравнения
- •42 Линейные дифференциальные уравнения первого порядка с правой частью
- •43. Однородные дифференциальные уравнения второго порядка
- •44. Дифференциальные уравнения второго порядка с правой частью
- •45. Числовые ряды . Основные понятия. Сходимость ряда. Необходимый признак сходимости
- •46. Гармоничный ряд. Ряд арифметической прогрессии.
- •47. Ряды с положительными членами. Признаки сходимости
- •48. Ряды с членами произвольного знака. Признаки сходимости
- •49. Функциональные ряды. Основные понятия. Область сходимости
- •50. Степенной ряд. Признак сходимости. Область сходимости
- •51. Ряд маклорна и разложение функций в этот ряд
- •52. Ряд Тейлора и разложение функции в этот ряд
- •53. Приминение рядов для вычисления определенных интегралов
36. Комплексная плоскость. Арифметические действия над комплексными числами
Ко́мпле́ксная
плоскость[1] —
это двумерное вещественное
пространство
,
которое изоморфно полю
комплексных чисел
.
Каждая точка такого пространства —
этоупорядоченная
пара вида
,
где
и
— вещественные
числа,
и где первый элемент пары соответствует
вещественной части, а второй элемент
пары соответствует мнимой части комплексного
числа
:
Упорядоченную пару естественно интерпретировать как радиус-вектор с началом в нуле и с концом в точке . В силу изоморфизма между и , алгебраические операции над комплексными числами переносятся на операции над соответствующими им радиус-векторами: сложение комплексных чисел — это сложение соответствующих радиус-векторов; умножение комплексных чисел — это преобразование радиус-вектора, связанное с его поворотом и растяжением. Результатом компактификации комплексной плоскости является расширенная комплексная плоскость — комплексная плоскость, дополненная бесконечно удалённой точкой, изоморфная комплексной сфере. Комплексная плоскость связана с комплексной сферой, например, стереографической проекцией. Комплекснозначные функции комплексного переменного обычно интерпретируются как отображения комплексных плоскости или сферы в себя. Поскольку прямые на плоскости (при стереографической проекции) переходят в окружности на сфере, содержащие бесконечно удалённую точку, комплексные функции удобнее рассматривать на сфере. Рассматривая на комплексной плоскости топологию , можно вводить понятия открытых, замкнутых множеств, и давать определения таким объектам как кривые и формулировать такие свойства комплексных функций как непрерывность, дифференцируемость и аналитичность, а комплексное представление позволяет компактно описывать эти свойства на языке соотношений между вещественными и мнимыми частями, а также, между модулями и аргументами соответствующих комплексных чисел. Особую роль в комплексном анализе играют конформные отображения.
Сумма Суммой комплексных чисел z1 = a + bi и z2 = с + di называется комплексное число (a + c) + (b + d)i. Таким образом: z1 + z2 = (a + bi) + (c + di) = (a + c) + (b + d)i. Сумма комплексных чисел обладает свойствами: коммутативности: z1 + z2 = z2 + z1 ассоциативности: (z1 + z2) + z3 = z1 + (z2 + z3) Произведение Произведением комплексных чисел z1 = a + bi и z2 = c + di называется комплексное число (ac - bd)+(ad + bc)i. Определение произведения устанавливается с таким расчетом, чтобы (a + bi) и (c + di) можно было перемножить как алгебраические двучлены, считая при этом, что i*i = -1. Произведение комплексных чисел обладает свойствами: коммутативности: z1 * z2 = z2 * z1 ассоциативности: (z1 * z2) * z3 = z1 * (z2 * z3) дистрибутивности: z1 * (z2 + z3) = z1 * z2 + z1 * z3 На основании определения произведения комплексных чисел можно определить натуральную степень комплексного числа: z(в степени n); = z * z * ... * z n раз. Разность Разностью комплексных чисел z1 = a + bi и z2 = c + di называется комплексное число z = z1 - z2 = (a - c) + (b - d)i. ЧастноеЧастным от деления комплексного числа z1 на комплексное число z2 называется такое число z, которое удовлетворяет условию z? z2 = z2 ? z= = z1. |
|