
- •Оглавление
- •По дисциплине «Информационные технологии»
- •Роль информационных технологий в развитии экономики и общества. Проблемы, перспективы, положительные и негативные аспекты информатизации.
- •Общая классификация видов информационных технологий и их реализация в программно-аппаратных комплексах прикладной области деятельности.
- •Роль и место эталонной модели взаимодействия открытых систем в информационных технологиях. Программно-аппаратная реализация.
- •Базовые сетевые информационные технологии в цифровых сетях связи. Особенности их использования.
- •Информационные технологии поддержки принятия решений. Основная программно-аппаратная реализация в пакетах прикладных программ.
- •Информационные технологии хранилищ и баз данных. Отличительные особенности современных субд. Облачные технологии.
- •Информационные технологии защиты информации. Виды, способы защиты информации в каналах связи. Коммерческая тайна, способы защиты на основе программно-аппаратных решений.
- •Современные технологические решения хранения и коллективной обработки данных в условиях глобализованного информационного телекоммуникационного пространства постиндустриального общества.
- •12 Принципов анимации
- •Аудит ис и ит предприятия/организации. Основные цели и задачи. Технический аудит. Аудит по. Организация и аудит процессов управления ит службой.
- •1. Специальные программы лицензирования производителей по
- •4. Разработка необходимого по на заказ
- •Операционная система (ос). Классификация ос. Эволюция ос. Функции ос. Разновидности ос. Обобщенная модель иерархической ос.
- •Ресурсы компьютерной системы. Классификация. Виды лицензий и способы оптимизации издержек предприятия на программное обеспечение и автоматизацию деятельности.
- •1. Специальные программы лицензирования производителей по
- •4. Разработка необходимого по на заказ
- •Пользовательский интерфейс и его эргономика. Интерфейс ис как сценарий поведения пользователя. Роль графического дизайна в ис.
- •Технологии экспертных систем. Базы знаний. Извлечение знаний из данных. Информационные хранилища. Совокупная стоимость владения, решения по оптимизации. Olap-технология.
- •Гипертекстовые и мультимедийные бд. Распознавание образов. Оптимизация и сжатие данных. Стандарты сжатия графических данных, и аудиоинформации. Программные решения.
- •Технологии хранения данных. Язык sql. Архитектура реляционной бд. Нормальные формы рбд. Субд, примеры, области применения. Совокупная стоимость владения и оптимизация издержек.
- •Динамика изменения показателей эффективности функционирования базы данных по этапам жизненного цикла ис предприятия.
- •Задачи анализа транзакций на этапе логического проектирования бд и правила его проведения на примере одной транзакции. Oltp-технология.
- •Задачи анализа транзакций на этапе физического проектирования бд и правила его проведения на примере одной транзакции. Технология оперативной обработки транзакций.
- •Жизненный цикл бд. Этапы проектирования бд в пользовательских приложениях. Цель и виды работ на этапе логического проектирования базы данных в пользовательских приложениях.
- •Жизненный цикл бд. Этапы проектирования бд в пользовательских приложениях. Цель и виды работ на этапе физического проектирования базы данных в пользовательских приложениях.
- •Вопрос 11
- •Распределенные бд. Основные стандарты, технологии, организация доступа, инструментальные средства реализации. Типовые решения, экономическая эффективность и совокупная стоимость владения.
- •По дисциплине «Вычислительные системы, сети и телекоммуникации»
- •Классификация и архитектура информационно-вычислительных сетей и сетей телекоммуникаций. Информационно-телекоммуникационная структура современного экономического объекта.
- •Информационные ресурсы глобальной сети, российский сегмент Интернет. Виды, организация, этапы и системы информационного поиска сети Интернет.
- •Способы адресной доставки сообщений в системах передачи данных, программное и аппаратное обеспечение адресной доставки.
- •Виртуальные частные сети (vpn). Назначение, основные возможности, принципы функционирования и варианты реализации vpn. Структура защищенной корпоративной сети.
- •Представление непрерывных сигналов в цифровой форме. Дискретизация. Квантование и его виды. Возникновение ошибок дискретизации и квантования в ис. Кодирование. Примеры кодирования сигнала в ис.
- •Принципы работы, ограничения и возможности коммутаторов, концентраторов, маршрутизаторов, мостов и шлюзов. Технология мультиплексирования.
- •Прикладные протоколы tcp/ip (smtp, рорз, imap4, http, ftp), принципы работы.
- •Системное администрирование. Баланс функциональности, безопасности и надежности сети. Экономические аспекты.
- •Технологии передачи данных в магистральных цифровых сетях (pdh, sdh). Синхронизация данных.
- •Локальные компьютерные сети. Среда передачи данных. Топология сети. Аппаратное и программное обеспечение сетевого взаимодействия.
- •Общие принципы организации глобальных сетей. Интернет: аппаратные средства и протоколы обмена информацией, адресация, доступ. Сервисы Интернет и их применение в предметной области.
- •Телекоммуникационные системы. Основные части и характеристики телекоммуникационных систем. Особенности и варианты симплексных, дуплексных и полудуплексных систем. Методы уплотнения каналов.
- •Сетевое оборудование: повторители, концентраторы, мосты и коммутаторы. Функции и назначение отдельных устройств. Технико-экономическое обоснование проектных решений.
- •Цифровые сети связи, особенности их функционирования. Технологии реализации, протоколы обмена данными и электронными сообщениями.
- •Понятия и структура проекта ис. Требования к эффективности и надежности проектных решений. Основные стандарты и госТы проектирования ис.
- •Основные компоненты технологии, методы и средства проектирования ис. Выбор технологии и инструментальных средств реализации.
- •Методологии проектирования ис. Case-технологии, их содержание и классификации. Инструментальные средства реализации.
- •Каноническое проектирование ис. Стадии и этапы процесса проектирования ис. Состав проектной документации.
- •Состав работ на предпроектной стадии, стадии технического и рабочего проектирования, стадии ввода в действие ис, эксплуатации и сопровождения.
- •Особенности проектирования интегрированных ис. Система управления информационными потоками как средство интеграции приложений ис.
- •Типовое проектирование ис. Понятие типового элемента. Технологии параметрически-ориентированного и модельно-ориентированного проектирования.
- •Методы и алгоритмы, инструментальные средства, используемые при оценке эффективности управления проектами ис.
- •Технологии проектирования распределенных информационных систем. Стандартные методы совместного доступа к базам и программам в сложных информационных системах.
- •Автоматизированное проектирование ис с использованием case-технологий, конструкции и их реализация в современных программно-аппаратных средствах.
- •Содержание и особенности rad-технологии прототипного создания приложений ис.
- •Экспертные системы и системы поддержки принятия решения. Особенности, структура. Инструментальные средства реализации.
- •Методологии проектирования программного обеспечения. Case-технологии, их содержание и классификации.
- •Проектирование системы управления предприятием (erp-системы). Организация внутреннего документооборота и его стандартизация. Совокупная стоимость владения. Обоснование проектных решений.
- •Концептуальная модель uml, строительные блоки uml, правила языка uml, общие механизмы языка uml, архитектура, жизненный цикл разработки по. Особенности использования при проектировании ис.
- •По дисциплине «Информационная безопасность»
- •Методы и средства защиты информации в ит управления организацией (предприятием). Основные источники и пути реализации угроз. Программно-аппаратные средства защиты.
- •Виды мер и основные принципы обеспечения безопасности информационных технологий. Виды мер противодействия угрозам безопасности. Достоинства и недостатки различных видов мер защиты.
- •Основные принципы построения системы обеспечения безопасности информации в автоматизированной системе.
- •Системы аутентификации. Службы каталогов (Active Directory, nds). Инструментальные средства реализации.
Автоматизированное проектирование ис с использованием case-технологий, конструкции и их реализация в современных программно-аппаратных средствах.
CASE-технология (Computer Aided Software Engineering) представляет собой совокупность методологий анализа, проектирования, разработки и сопровождения сложных систем программного обеспечения, поддержанную комплексом взаимоувязанных средств автоматизации.
Обычно к CASE-средствам относят любое программное средство, автоматизирующее ту или иную совокупность процессов жизненного цикла ПО и обладающее следующими основными характерными особенностями:
мощные графические средства для описания и документирования ИС, обеспечивающие удобный интерфейс с разработчиком и развивающие его творческие возможности;
интеграция отдельных компонент CASE-средств, обеспечивающая управляемость процессом разработки ИС;
использование специальным образом организованного хранилища проектных метаданных (репозитория).
В состав интегрированного CASE-средства (или комплексf средств, поддерживающих полный ЖЦ ПО) входят следующие элементы:
- репозиторий, позволяет обеспечить сохранность вариантов проекта и его определенных компонентов, синхронизацию информации от разных разработчиков в процессе групповой разработки, проверка метаданных на полноту и непротиворечивость;
- средства разработки приложений, с использованием языков 4GL и генераторов кодов;
- средства тестирования;
- средства документирования;
- графические средства анализа и проектирования, которые дают возможность создавать и редактировать иерархически связанные диаграммы (DFD, ERдиаграмма и др.), создающие модели информационных систем;
- средства реинжиниринга.
- средства конфигурационного управления;
- средства управления проектом.
CASE-инструменты классифицируются по типам и категориям.
Классификация по типам отражает функциональную ориентацию средств на те или иные процессы жизненного цикла разработки программного обеспечения, и, в основном, совпадают с компонентным составом крупных интегрированных CASE-систем, и включает следующие типы:
средства анализа — предназначены для построения и анализа предметной области (BPwin Logic Works).;
средства проектирования баз данных (ERwin)
средства разработки приложений (PowerBuilder);
средства реинжиниринга процессов (изменение процессов (полное)) (Vantage Team Builder, ERwin ).;
средства планирования и управления проектом;
средства тестирования;
средства документирования.
Классификация по категориям определяет степень интегрированности по выполняемым функциям и включают — отдельные локальные средства, решающие небольшие автономные задачи, набор частично интегрированных средств, охватывающих большинство этапов жизненного цикла и полностью интегрированных средств, охватывающий весь жизненный цикл информационной системы и связанных общим репозиторием.
Типичными CASE-инструментами являются:
инструменты управления конфигурацией;
инструменты моделирования данных;
инструменты анализа и проектирования;
инструменты преобразования моделей;
инструменты редактирования программного кода;
инструменты рефакторинга кода (делать код проще для понимания, не меняя его поведения);
генераторы кода;
инструменты для построения UML-диаграмм.
Именно BPwin (All Fusion Process Modeler) и ERwin (All Fusion ERwin Data Modeler) на сегодняшний день являются наиболее популярными CASE- средствами, входящими в пакет AllFusion Modeling Suite – интегрированный комплекс CASE-средств, обеспечивающий все потребности компаний-разработчиковпрограммного обеспечения. Данный пакет служит для проектирования и анализа баз данных, бизнес-процессов и информационных систем и включает продукты:
BPwin, ERwin ,AllFusion Data Model Validator (инструмент для проверки структуры баз данных и создаваемых в ERwin моделей), AllFusion Model Manager (среда для работы группы проектировщиков на ERwin и BPwin), AllFusion Component Modeler (моделирования компонентов программного обеспечения и генерации объектного кода приложений на основе созданных моделей).
Правильный выбор и грамотное применение CASE-средств при автоматизации процессов проектирования позволяет произвести оптимизацию информационных систем, значительно повысить их эффективность, снизить вероятность ошибок, а также сократить издержки.
Основные черты CASE-технологии:
Назначение: автоматизация проектирования сложных информационных систем. Изначально CASE-средства были ориентированы на разработку ПО. Сейчас чаще всего под такими средствами подразумевают любые средства проектирования ИС и/или моделирования предметной области.
CASE-средства охватывают все стадии ЖЦ ИС (анализ, проектирование, разработка, сопровождение).
Не создают новых методологий, а повышают эффективность использования существующих – за счет автоматизации.
Цели использования CASE-технологии в индустриальном проектировании ИС:
Улучшение качества разрабатываемой ИС за счет автоматического контроля и генерации отдельных элементов;
Возможность повторного использования компонентов разработки;
Повышение уровня адаптивности и качества сопровождения ИС;
Использование методологии прототипного проектирования;
Ускорение работы за счет автоматизированной генерации кода и автоматизированного документирования проекта;
Возможность коллективной разработки ИС в режиме реального времени.