
- •1.Кинематическое уравнения движения материальной точки (тело отсчета, система координат, уравнение движения).
- •2.Скорость (средняя. Ее модуль, мгновенная скорость и ее модуль). Путь, траектория, вектор перемещения, длинна пути.
- •3. Ускорение и его составляющее (среднее, мгновенное, нормальное, тангинцеальное, полное ускорение при криволинейном движении)
- •5.Угловое ускорение (направление его, связь, между линейной и угловой величиной псевдо векторы)
- •6.Первый закон Ньютона.
- •17. Момент силы относительно точки и оси.
- •18. Кинетическая энергия вращения, уравнение динамики вращательного движения.
- •19. Момент импульса и закон его сохранения.
- •22. Закон всемирного тяготения. Сила тяжести. Вес тела. Невесомость.
- •24. Связь между потенциалом поля тяготения и его напряженностью. Космические скорости.
- •25. Силы инерции. Закон Ньютона для неинерциальных систем отсчета. Проявление сил инерции.
- •26. Давление жидкости. Закон Паскаля, Архимеда. Несжимаемая жидкость. Гидростатическое давление.
- •28. Некоторые применения ур-я Бернулли. Монометры и скорость истечения жидкости через малое отверстие в стенке сосуда.
- •29. Вязкость жидкости. Сила внутреннего трения. Ламинарное и турбулентное течение. Число Рейнольдса.
- •30.Постулаты специальной теории относительности, постулаты Эйнштейна и преобразования Лоренца.
- •31.Длинна тела в разных системах отсчета и релятивистский закон сложения скоростей.
- •32Явление переноса. Теплопроводность (Закон Фурье) диффузиии (Фика) внутреннее трение (Ньютона).
- •33.Внутренняя энергия. Число степеней свободы.
- •37. Теплоемкость, удельная и молярная теплоемкость Ср и Сv, уравнение Майера.
- •38.Изопроцессы, физический смысл газовой постоянной.
- •39.Изохорный и изотермический процесс. Адиабатический. Уравнение Пуассона, адиабата и работа газа в адиабатном процессе.
- •40Обратимые и необратимые процессы прямой и обратный цикл. Термический кпд для круговых процессов.
- •41.Энтропия. Неравенство Клаудиусса. Изменение энтропии.
- •42.Термодинамическая вероятность составляющей и формула Больцмана.
- •43.Второе начало термодинамики 2 формулировки по (Кельвину и Клаудису). Статистическое толкование.
- •44Тепловой двигатель, принцип работы и принцип карно.
- •45.Холодильные машины.
- •46.Цикл. Карно. Работа за цикл и термический кпд цикла Карно.
- •47.Силы и потенциальная энергия межмолекулярного взаимодействия. Критерии различных агрегатных состояний вещества.
- •50.Внутренняя энергия реального газа.
- •51 Жидкости и их описание. Молекулярное внутреннее давление и поверхностная энергия.
- •54. Капиллярные явления. Избыточное давление.
- •56.Кристаллографический признак кристаллов. Типы кристаллических согласно физических принципов.
- •57Дефекты кристаллов.
- •58.Испарение, сублимация, плавление и кристаллы.
- •59.Свободные и гармонические колебания. Уравнение гармонических колебаний.
- •60. Механические и гармонические колебания. Смещение колеблющейся точки.
- •67. Вынуждение механические колебания.
- •68. Продольные и поперечные волны, длина волны, график поперечной волны, распространяющейся со скоростью V вдоль оси х, волновой фронт, волновая поверхность.
42.Термодинамическая вероятность составляющей и формула Больцмана.
Термодинамическая веро ятность состояния. Это число способов, кото рым может быть реализовано данное состояние макро скопической системы, или число микросостоян., осуществляющих данное сост. W>1 – всегда. Энтропия и термодинамическая вероятность в сос тоянии замкнутой системы могут либо возрастать, в случае необратимых процессов, либо оставаться постоянными в случае обратимых процессов. Т.к. все реальные процессы – необратимы, то все про цессы в замкнутой системе ведут к увеличению её энтропии. Связь энтропии и термодинамической ве роятности S=k ln W Энтропия определ. логар. числа микросостояний; котор. может быть реализована данное макросостояние.Статическое толкование энтропии Энтропия является мерой неупорядоч. с-мы. Чем больше число микросостояний реализуют данное,макросостояние тем больше S. В сост. равновесия (наиболее вероятн.сост. системы) число микросост. max и S.II начало термодинами ки. Первое начало термодинамики выражается законами сохранения и превращения энергии и не позволяет установить направление направление термодинамических процессов.
43.Второе начало термодинамики 2 формулировки по (Кельвину и Клаудису). Статистическое толкование.
II начало термо динамики определят направлении протекания тер модинамических проц., указывая какие проц. в при роде возможны, какие нет. Формулировка по Кель вину: невозможен круговой процесс, единственный результат которого является превращение теплоты, полученное от нагревателя в эквивалент его рабо ты. Формулировка по Клаузису: Невозможен кру говой процесс, единственным результатом которо го является передача теплоты полученная от менее нагретого тела к более. Второе начало термоди намики может быть сформулировано как закон возрастания S, т.е. любой необратимый процесс замкнутой системы происходит так, что энтропия системы при этом возрастает. Статическое толко вание второго начала термодинамики. Второе начало являясь статистическим законом описывает закономерное хаотическое движение большого числа частиц, составляющих замкнутой системы, поэтому возрастает S означает переход системы из менее вероятной в более вероятное состояние.
44Тепловой двигатель, принцип работы и принцип карно.
Вечный двигатель второго рода – периодически действующий двигатель, совершающий работу за счёт получения теплоты извне. Принцип работы от термостата с более высокой температурой Т1 называется нагревателем, за цикл отнимается кол-во теплоты Q1, а термостату с более низкой темп. Т2, называемому холодильником, за цикл пере даётся кол-во теплоты Q2, при этом совершается работа:A=Q1-Q2ɳ=A/Q1=1-Q2/Q1Чтобы был ра вен 1, необходимо, чтобы Q2 = 0 (тепловой двига тель должен иметь один источник теплоты). Корно показал, что для работы теплового двигателя необ ходимо не менее 2-х источн. тепла с различным Т.
Термостат – это термодинамическая система, ко торая может обмениваться теплотой с окружающи ми телами без изменения своей температуры.
Теорема Корно: Из всех периодически действую щих тепловых машин, имеющих одинаковую тепло ту нагревателя Т1 и холодильника Т2 наибольшая обладают обратимые машины. При этом обрати мые машины работающие при одинаковых Т1, Т2 раны друг другу, и не зависят от природы рабочего тела.