Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
bio_otvety.docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
764.62 Кб
Скачать

63. Фенотипическая (определенная, групповая, ненаследственная) или модификационная изменчивость. Её значение в онтогенезе и филогенезе. Фенокопии и генокопии.

Фенотипическая изменчивость охватывает изменения состояния непосредственно признаков, которые происходят под влиянием условий развития или факторов внешней среды. Наследственный материал при этом в изменения не вовлекается.

Если фенотипические изменения не выходят за пределы "нормы реакции" и вызываются известным фактором внешней среды, их называют модификациями. Так, существует порода кроликов русских горностаевых, которые имеют белый мех с черными пятнами на кончике морды, ушах, лапах, хвосте. Если на спине такого кролика выбрить участок и поместить животное на некоторое время на хород, то оголенное место зарастет темной шерстью. На участках, занятых обычно темной шерстью, при повышении температуры сверх определенного предела вырастает белая шерсть. Таким образом, регестрируемая изменчивость затрагивает лишь фенотип особи и обусловливается вождействием конкретного фактора среды - температурного.

Фенотипические изменения называют случайными, если они появляются в результате совместного действия на организм многих факторов внешней среды, причем интенсивность действия каждого из них сопоставима и незначительна (Б. Л. Астауров). Закономерности фенотипической изменчивости важны для медицинской практики, т.к значение их помогает оценить значение отдельных факторов среды или всей совокупности условий, в которых протекает онтогенез, для развития фенотипа. Модификационной изменчивостью объясняется феномен фенокопирования. В качестве примера рассмотрим гипоспадию, - порок развития мужской половой системы. Он проявляется в смешении наружного отверстия мочеиспускаткльного канала и головки полового члена к его основанию. Причинойгипоспадии могут быть изменения в ген. матерпале или отклрнения в ходе эмбриогенеза. В последнем случае изменениу представляет собой фенокопию. Генокопия - это сходные фенотипы, сформировавшиеся под влиянием разных неаллельных генов. То есть это одинаковые изменения фенотипа, обусловленные аллелями разных генов, а также имеющие место в результате различных генных взаимодействий или нарушений различных этапов одного биохимического процесса с прекращением синтеза. проявляется как эффект определенных мутаций, копирующих действие генов или их взаимодействие

64. Генотипическая (неопределенная, индивидуальная, наследственная) изменчивость. Её значение в онтогенезе и филогенезе. Фенокопии и генокопии. Закон гомологических рядов в наследственной изменчивости (Н. И. Вавилов). Его значение для селекции и медецины.

Генотипическая изменчивость - изменчивость организма, обусловленная изменениемг генетического материалаклетки или или комбинациями генов в генотипе, которые могут привести к появлению новых признаков или их новому сочетанию. Изменчивость, возникающая при скрещивании в результате различных комбтнаций генов и их взаимодействия между собой, называется комбинативной. Механизмы её возникновения:

1)независимое расхождение хромосомв мейозе;

2)кроссинговер;

3)случайнок сочетание гамет при оплодотворении;

Она наследуется согласно правилам Менделя. На проявление признаков при комбинативной измен-ти оказывает влияние взаимодействиегенов из одной и разных аллельных пар, множествееные аллели, плейтропное действие генов, пенентрантность и экспрессивность гена и т.д. Благодаря комбинативной изменчивости обеспечивается большое разнообразие наследственных признакову человека. На проявление К. И у человека будет оказывать влияние с-ма скрещивания или с-ма браков: инбридинг и аутбридинг.

Инбридинг - родственный брак, который можетбыть в разной степени тесным. брак с братьями и сестрами или родителей с детей называется первой степени родства и является наиболее тесным. Менее тесный - между двоюродными братьями и сестрами или племянниками с детьми или тетками.

1.Первое важное следствие инбридинга - повышение с каждым поколением гомозиготности потомков по всем независимо наследуемым генам.

2.Второе - разложение популяции на ряд генетически различных линий. Изменчивость инбридуемой популяции будет возрастать, тогда как изм-ть каждой выделяемой линиии снижается.

Аутбридинг -неродственный брак. Неродственными особи считаются - если нет общих предков в 4-6 поколениях. Аутбридинг повышает гетерозиготность потомков, объеденяет в гибридах аллели, которыеу родителей сущ-ли порознь. Вредные рецесивные гены, аходящиеся у родителей в гомозиготном состоянии, подавляются у гетерозиготных по ним потомков.

Наследственная изменчивость обусловлена возникновением разных типов мутаций и их комбинаций в последующих скрещиваниях. В каждой достаточно длительно (в ряде поколений) существующей совокупности особей спонтанно и ненаправленно возникают различные мутации, которые в дальнейшем комбинируются более или менее случайно с разными уже имеющимися в совокупности наследственными свойствами. Изменчивость, обусловленную возникновением мутаций, называют мутационной, а обусловленную дальнейшим перекомбинированием генов в результате скрещивания -- комбинационной. На наследственной изменчивости основано все разнообразие индивидуальных различий, которые включают:

а) как резкие качественные различия, не связанные друг с другом переходными формами, так и чисто количественные различия, образующие непрерывные ряды, в которых близкие члены ряда могут отличаться друг от друга сколь угодно мало;

б) как изменения отдельных признаков и свойств (независимая изменчивость), так и взаимосвязанные изменения ряда признаков (коррелятивная изменчивость);

в) как изменения, имеющие приспособительное значение (адаптивная изменчивость), так и изменения «безразличные» или даже снижающие жизнеспособность их носителей (неадаптивная изменчивость).

Все эти типы наследственных изменений составляют материал эволюционного процесса. В индивидуальном развитии организма проявление наследственных признаков и свойств всегда определяется не только основными, ответственными за данные признаки и свойства генами, но и их взаимодействием со многими другими генами, составляющими генотип особи, а также условиями внешней среды, в которой протекает развитие организма.

В понятие ненаследственной изменчивости входят те изменения признаков и свойств, которые у особей или определенных групп особей вызываются воздействием внешних факторов (питание, температура, свет, влажность и т.д.). Такие ненаследственные признаки (модификации) в их конкретном проявлении у каждой особи не передаются по наследству, они развиваются у особей последующих поколений лишь при наличии условий, в которых они возникли. Такая изменчивость называется также модификационной. Например, окраска многих насекомых при низкой температуре темнеет, при высокой -- светлеет; однако их потомство будет окрашено независимо от окраски родителей в соответствии с температурой, при которой оно само развивалось. Существует еще одна форма ненаследственной изменчивости - так называемые длительные модификации, часто встречающиеся у одноклеточных организмов, но изредка наблюдаемые и у многоклеточных. Они возникают под влиянием внешних воздействий (например, температурных или химических) и выражаются в качественных или количественных отклонениях от исходной формы, обычно постепенно затухающих при последующем размножении. Они основаны, по-видимому, на изменениях относительно стабильных цитоплазматических структур.

На основании изучения спонтанных мутаций внутри популяций одного вида и при сравнении популяций разных видов Н. И. Вавилов сформулировал закон гомологичных рядов наследственной изменчивости: «Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов». Чем генетически ближе расположены в общей системе роды, тем полнее сходство изменчивости в их рядах. Главное в законе гомологичных рядов состояло в новом подходе к пониманию принципов мутаций в природе. Оказалось, что процесс наследственной изменчивости запрограммирован со стороны его исторически сложившегося генотипа. Мутации являются случайными, если их брать по отдельности. Однако, в целом, они в свете закона гомологичных рядов становятся в системе вида закономерным явлением

65. Характеристика процессов мутагенеза и канцерогенеза. Мутагенные факторы и их классификация. Характеристика и механизмы действия мутагенных факторов. Человеческая деятельность как основной источник загрязнения окружающей среды.

Механизмы мутагенеза

Последовательность событий, приводящая к мутации (внутри хромосомы) выглядит следующим образом. Происходит повреждение ДНК. Если повреждение ДНК не было корректно репарировано, оно приведет к мутации. В случае если повреждение произошло в незначащем (интрон) фрагменте ДНК, или если повреждение произошло в значащем фрагменте (экзон) и, вследствие вырожденности генетического кода не произошло нарушения, то мутации образуются, но их биологические последствия будут незначительными или могут не проявиться.

Мутагенез на уровне генома также может быть связан с инверсиями, делециями, транслокациями, полиплоидией, и анеуплоидией, удвоением, утроением (множественной дупликацией) и т. д. некоторых хромосом.

В настоящее время существует несколько подходов, использующихся для объяснения природы и механизмов образования точечных мутаций. В рамках общепринятой, полимеразной модели считается, что единственной причиной образования мутаций замены оснований являются спорадические ошибки ДНК-полимераз.

Искусственный мутагенез

Искусственный мутагенез широко используют для изучения белков и улучшения их свойств (направленной эволюции (англ.)).

Ненаправленный мутагенез

Методом ненаправленного мутагенеза в последовательность ДНК вносятся изменения с определенной вероятностью. Мутагенными факторами (мутагенами) могут быть различные химические и физические воздействия — мутагенные вещества, ультрафиолет, радиация. После получения мутантных организмов производят выявление (скрининг) и отбор тех, которые удовлетворяют цели мутагенеза. Ненаправленный мутагенез более трудоемок и его проведение оправдано, если разработана эффективная система скрининга мутантов.

Направленный мутагенез

В направленном (сайт-специфическом) мутагенезе изменения в ДНК вносятся в заранее известный сайт. Для этого синтезируют короткие одноцепочечные молекулы ДНК (праймеры), комплементарные целевой ДНК за исключением места мутации.

Канцерогене́з (лат. cancerogenesis; cancer — рак + др.-греч. γένεσις — зарождение, развитие) — сложный патофизиологический процесс зарождения и развития опухоли. (син. онкогенез).

Изучение процесса канцерогенеза является ключевым моментом как для понимания природы опухолей, так и для поиска новых и эффективных методов лечения онкологических заболеваний. Канцерогенез — сложный многоэтапный процесс, ведущий к глубокой опухолевой реорганизации нормальных клеток организма. Из всех предложенных до ныне теорий канцерогенеза, мутационная теория заслуживает наибольшего внимания. Согласно этой теории, опухоли являются генетическими заболеваниями, патогенетическим субстратом которых является повреждение генетического материала клетки (точечные мутации, хромосомные аберрации и т. п.). Повреждение специфических участков ДНК приводит к нарушению механизмов контроля за пролиферацией и дифференцировкой клеток и в конце концов к возникновению опухоли.

Генетические аспекты канцерогенеза

Генетический аппарат клеток обладает сложной системой контроля деления, роста и дифференцировки клеток. Изучены две регулирующие системы оказывающие кардинальное влияние на процесс клеточной пролиферации.

Канцерогенные факторы

-Химические факторы

Вещества ароматической природы (полициклические и гетероциклические ароматические углеводороды, ароматические амины), некоторые металлы и пластмассы обладают выраженным канцерогенным свойством благодаря их способности реагировать с ДНК клеток, нарушая ее структуру (мутагенная активность). Канцерогенные вещества в больших количествах содержатся в продуктах горения автомобильного и авиационного топлива, в табачных смолах. При длительном контакте организма человека с этими веществами могут возникнуть такие заболевания, как рак легкого, рак толстого кишечника и др. Известны также эндогенные химические канцерогены (ароматические производные аминокислоты триптофана), вызывающие гормонально зависящие опухоли половых органов.

-Физические факторы

Солнечная радиация (в первую очередь ультрафиолетовое излучение) и ионизирующее излучение также обладает высокой мутагенной активностью. Так, после аварии Чернобыльской АЭС отмечено резкое увеличение заболеваемости раком щитовидной железы у людей, проживающих в зараженной зоне. Длительное механическое или термическое раздражение тканей также является фактором повышенного риска возникновения опухолей слизистых оболочек и кожи (рак слизистой рта, рак кожи, рак пищевода).

-Биологические факторы

Доказана канцерогенная активность вируса папиломы человека в развитии рака шейки матки, вируса гепатита В в развитии рака печени, ВИЧ — в развитии саркомы Капоши. Попадая в организм человека, вирусы активно взаимодействуют с его ДНК, что в некоторых случаях вызывает трансформацию собственных протоонкогенов человека в онкогены. Геном некоторых вирусов (ретровирусы) содержит высоко активные онкогены, активирующиеся после включения ДНК вируса в ДНК клеток человека.

-Наследственная предрасположенность

Изучено более 200 наследственных заболеваний, характеризующихся повышенным риском возникновения опухолей различной локализации. Развитие некоторых типов опухолей связывают с врожденным дефектом системы репарации ДНК (пигментная ксеродерма).

Существует мнение что в организме человека постоянно образуются потенциальные опухолевые клетки. Однако в силу своей антигенной гетерогенности они быстро распознаются и разрушаются клетками иммунной системы. Таким образом нормальное функционирование иммунной системы является основным фактором натуральной защиты от опухолей. Этот факт доказан клиническими наблюдениями за больными с ослабленной иммунной системой, у которых опухоли встречаются в десятки раз чаще чем у людей с нормально работающей иммунной системой. Иммунный механизм сопротивляемости опухолям опосредован большим количеством специфических клеток (В- и Т-лимфоциты, NK-клетки, моноциты, полиморфо-ядерные лейкоциты) и гуморальных механизмов. В процессе опухолевой прогрессии клетки опухоли оказывают выраженное антииммунное действие, что приводит к ускорению темпов роста опухоли и появлению метастазов.

Классификация мутагенов и их характеристика

По происхождению мутагены классифицируют на эндогенные, образующиеся в процессе жизнедеятельности организма и экзогенные – все прочие факторы, в том числе и условия окружающей среды.

По природе возникновения мутагены классифицирует на физические, химические и биологические. Физическими мутагенами называются любые физические воздействия на живые организмы, которые оказывают либо прямое влияние на ДНК или вирусную РНК, либо опосредованное влияние через системы репликации, репарации, рекомбинации

Первые физические мутагены, открытые учеными,- это разные виды излучений: ионизирующее излучение, радиоактивный распад, ультрафиолетовое излучение.

Первичный эффект ионизирующих и ультрафиолетовых излучений заключается в образовании одиночных или двойных разрывов в молекуле ДНК. Ультрафиолет сильно поглощается тканями и вызывает мутации лишь в поверхностно расположенных клетках многоклеточных животных, однако на одноклеточных он действует эффективно. Мутагенное действие ультрафиолета было установлено в 1931 г. А.Н. Промптовым. Другими физическими мутагенами являются частицы разной природы, имеющие высокую энергию: это альфа- и бета-излучения радиоактивных веществ и нейтронное излучение. В случае прямого влияния на ДНК основную роль играют два параметра: величина энергии воздействующей частицы и способность биологического материала поглощать эту энергию. Повреждения ДНК могут быть двух типов: двунитевые и однонитевые разрывы.

Мутации может вызывать также высокая или низкая температура. В 1928 г. Меллер показал, что повышение температуры на 10 градусов по С повышает частоту мутаций у дрозофил в 2-3 раза. Зная способ действия этих мутагенов, можно было предположить, что они должны действовать на ДНК любых организмов. И действительно, вскоре было обнаружено, что например, рентгеновские лучи вызывают мутации у самых разных животных, растений и микроорганизмов. Выяснено, что мутации, вызванные излучениями, могут затрагивать любые признаки организма, так как квант излучения или частица с высокой энергией чисто случайно может повредить любой участок ДНК. Число возникающих мутаций тем больше, чем выше интенсивность излучения, то есть чем больше квантов или частиц попало в клетку в единицу времени. Также было показано, что физические факторы вызывают те же мутации, которые возникают и при спонтанном мутагенезе. У высших живых существ есть вещества, ослабляющие действие излучения – фотопротекторы, а многие растения содержат алкалоиды и кумарины, они усиливают процессы, вызванные радиацией и эти вещества опасны для животных. Физические мутагены и их действие сильно зависит от предварительной эволюции организма. К постоянно действующим мутагенам виды выработали устойчивость. Физический мутагенез может не регистрироваться из-за быстрой гибели мутантных организмов.

К химическим мутагенам относятся многие химические соединения самого разнообразного строения. Наибольшую мутагенную активность проявляют различные алкилирующие соединения, а также нитрозосоединения, некоторые антибиотики, обладающие противоопухолевой активностью.

Химические мутагены делят на мутагены прямого действия (соединения, реакционная способность которых достаточна для химической модификации ДНК, РНК и некоторых белков), и мутагены непрямого действия (промутагены - вещества, которые сами по себе инертны, но превращаются в организме в мутагены, в основном в результате ферментативного окисления). Мишенью действия мутагенов в клетке являются ДНК и некоторые белки. Ряд мутагенов вызывают мутации, не связываясь ковалентно с ДНК. В этом случае матричный синтез на ДНК протекает с ошибками. В синтезируемой нити ДНК оказывается на один нуклеотид больше или меньше обычного и возникают мутации. Существуют мутагены, ингибирующие синтез предшественников ДНК. В результате происходит замедление или даже остановка синтеза ДНК.

Мутагенные и канцерогенные свойства химических веществ тесно связаны между собой. Поэтому выявление возможных мутагенов в окружающей среде, испытание на мутагенность продуктов промышленного синтеза (красители, лекарственные средства, пестициды и др.) - важная задача современной генетики. Установлено, что мутагенной активностью обладает несколько тысяч химических соединений. Однако в отличие от ионизирующего и ультрафиолетового излучений для химических мутагенов характерна специфичность действия, зависящая от природы объекта и стадии развития клетки. При взаимодействии химических мутагенов с компонентами наследственных структур (ДНК и белками) возникают первичные повреждения последних. В дальнейшем эти первичные повреждения ведут к возникновению мутаций.

К биологическим мутагенам относят ДНК- и РНК-содержащие вирусы, некоторые полипептиды и белки, например О-стрептолизин и ряд ферментов рестриктаз, а также препараты некоторых ДНК и определенные плазмиды. Механизмы образования мутаций при действии различных биологических факторов не вполне ясны, однако агенты, содержащие нуклеиновые кислоты, могут вызывать нарушение процессов рекомбинации, что приводит к возникновению мутаций. Действие рестриктаз сводится к «разрезанию» цепей ДНК в месте (локусе) определенной последовательности нуклеотидов, специфичном для каждой рестриктазы. Биологические мутагены: - специфические последовательности ДНК – транспозоны; - некоторые вирусы (вирус кори, краснухи, гриппа); - продукты обмена веществ (продукты окисления липидов); Транспозоны – один из классов мобильных элементов генома которые, встраиваясь в геном, могут вызывать мутации, в том числе и такие значительные как хромосомные перестройки. Они играют важную роль в процессах переноса лекарственной устойчивости среди микроорганизмов, рекомбинации, и обмена генетическим материалом между различными видами как в природе так и в ходе генно-инженерных исследований.

Человеческая деятельность как основной источник загрязнения окружающей среды.

Загрязнением окружающей природной среды считается физико-химическое изменение состава природного вещества (воздуха, воды, почвы), которое угрожает состоянию здоровья и жизни человека, окружающей его естественной среды. Загрязнение бывает космическое — естественное, которое земля в значительном количестве получает из космоса, от извержения вулканов, и антропогенное, совершенное в результате хозяйственной деятельности человека. Рассмотрим второй вид загрязнения, совершаемого по воле человека.

Антропогенное загрязнение окружающей среды подразделяется на несколько видов. Это пылевое, газовое, химическое (в том числе загрязнение почвы химикатами), ароматическое, тепловое (изменение температуры воды), что отрицательно сказывается на жизнедеятельности водных животных. Источником загрязнения окружающей природной среды выступает хозяйственная деятельность человека (промышленность, сельское хозяйство, транспорт).

В последние годы на первое место по загрязнению выдвинулось сельское хозяйство. Это связано с двумя обстоятельствами. Первое — увеличение строительства крупных животноводческих комплексов при отсутствии какой-либо очистки образующихся отходов и их утилизации, и второе — увеличение применения минеральных удобрений и ядохимикатов, которые вместе с дождевыми потоками и подземными водами попадают в реки и озера, нанося серьезный ущерб бассейнам крупных рек, их рыбным запасам и растительности.

Ежегодно на одного жителя Земли приходится свыше 20 т отходов. Основными объектами загрязнения являются атмосферный воздух, водоемы, включая Мировой океан, почвы. Ежедневно в атмосферу выбрасываются тысячи и тысячи тонн угарного газа, окислов азота, серы и других вредных веществ. И только 10 % этого количества поглощается растениями. Окись серы (сернистый газ) — основной загрязнитель, источником которого являются тепловые электростанции, котельные, металлургические заводы.

Концентрация двуокиси серы в окислах азота, порождает кислотные дожди, которые уничтожают урожай, растительность, вредно сказываются на состоянии рыбных запасов. Наряду с сернистым газом отрицательное воздействие на состояние атмосферы оказывает углекислый газ, который образуется в результате горения. Его источники — тепловые электростанции, металлургические заводы, транспорт. За все предшествующие годы доля углекислого газа в атмосфере увеличилась на 20 % и продолжает увеличиваться на 0,2 % в год. При сохранении таких темпов прироста к 2000 году в атмосфере доля углекислоты возрастет на 30—40 %.

Такое физико-химическое изменение атмосферы может привести к явлению парникового эффекта. Суть его в том, что накопление углекислоты в верхних слоях атмосферы будет препятствовать нормальному процессу теплообмена между Землей и Космосом, будет сдерживать тепло, накапливаемое Землей в результате хозяйственной деятельности и в силу определенных естественных причин, например, извержения вулканов.

Другими не менее важными объектами загрязнения являются водоемы, реки, озера, Мировой океан. В Мировой океан ежегодно сливаются миллиарды тонн жидких и твердых отходов. Среди этих отходов первенствует нефть, которая попадает в океан с судов, в результате добычи нефти в морской среде, а также вследствие многочисленных аварий танкеров. Разлив нефти ведет к образованию в океане нефтяной пленки, гибели живых ресурсов моря, в том числе водорослей, плангтона, вырабатывающих кислород.

Кроме того, загрязнение Мирового океана ведет не только к сокращению продовольственных ресурсов, рыбных запасов, но и заражению их вредными для человека веществами. Обнаружено, что, например, балтийская треска имеет на 1 кг веса до 80 миллиграммов ртути, т.е. в 5—8 раз больше, чем в медицинском термометре.

Эти и другие последствия загрязнения окружающей природной среды в конечном итоге отрицательно сказываются на физическом здоровье человека, на его нервном, психическом состоянии, на здоровье будущих поколений. .

66. Мутации. Классификация мутаций. Характеристика геномных, хромосомных и генных мутаций. .Результаты изменений функциональных генов. Возрастание генетического груза в популяциях живых организмов и значение этого процесса для будущего человеческой цивилизации.

Мутации - это внезапные скачкообразные стойкие изменения в структуре генотипа, под влияниями факторов среды передающееся по наследству.

Организмы, у которых произошла мутация, называются мутантами. Мутационная теория была создана, как говорилось выше, Гуго де Фризом в 1901-1903 гг. На основных ее положениях строится современная генетика: мутации, дискретные изменения наследственности, в природе спонтанны, мутации передаются по наследству, встречаются достаточно редко и могут быть различных типов. В зависимости от того, какой признак положен в основу, на сегодняшний день существует несколько систем классификации мутаций.

Классификация мутаций

  1. По способу возникновения. Различают спонтанные и индуцированные мутации

Спонтанные-возникают под действием естественных мутационных факторов без участия человека.

Индуцированные мутации возникают при воздействии на человека мутагенами - факторами, вызывающими мутации. Мутагены же бывают трех видов:

* Физические (радиация, электромагнитное излучение, давление, температура и т.д.)

* Химические (цитостатики, спирты, фенолы и т.д.)

* Биологические (бактерии и вирусы )

2. По мутированию клеток.Существуют соматические и генеративные мутации. Генеративные мутации возникают в репродуктивных тканях и поэтому не всегда выявляются. Для того, чтобы выявилась генеративная мутация, необходимо, чтобы мутантная гамета участвовала в оплодотворении.Соматические мутации возникают в соматических клетках.

3. По исходу для организма:отрицательные, летальные, полулетальные,нейтральные, положительные.

4. По изменению генотипа. Мутации бывают генные, хромосомные и геномные.

5. По локализации в клетке. Мутации делятся на ядерные и цитоплазматические. Плазматические мутации возникают в результате мутаций в плазмогенах, находящихся в митохондриях.

Генные мутации. Генные (точковые) мутации затрагивают, как правило, один или несколько нуклеотидов, при этом один нуклеотид может превратиться в другой, может выпасть (делеция), продублироваться, а группа нуклеотидов может фразвернутся на 180 градусов. Например, широко известен ген человека, ответственный за серповидно - клеточную анемию, который может привести к летальному исходу. Соответствующий нормальный ген кодирует одну из полипептидныз цепей гемоглобина. У мутантного гена нарушен всего один нуклеотид (ГАА на ГУА). В результате в цепи гемоглобина одна аминокислота заменена на другую ( вместо глутамина - валин). Казалось бы ничтожное изменение, но оно влечет за собой роковые последствия: эритроцит деформируется, приобретая серповидно - клеточную форму, и уже не способен транспортировать кислород, что и приводит к гибели организма. Генные мутации приводят к изменению аминокислотной последовательности белка. Наиболее вероятное мутация генов происходит при спаривании тесно связанных организмов, которые унаследовали мутантный ген у общего предка. 

Геномные мутации - это мутации, которые приводят к добавлению либо утрате одной, нескольких или полного гаплоидного набора хромосом . Пример геномной мутации – удвоение всего числа хромосом в геноме (автополиплоидия), она может возникать из-за нерасхождения хромосом в митозе или мейозе.

Хромосомные мутации - изменение числа отдельных хромосом в геноме (анеуплоидия) или целостности хромосом (перестройки). Это одна из причин болезней человека. Моносомия (1n) или трисомия (3n) хромосомы в оплодотворенной яйцеклетке будут смертельны для плода (кроме половых и мелких хромосом), а в соматических клетках часто приводит к раку.

Результаты изменения функциональных генов:

1)белок репрессор не подходит к гену оператору- структурные гены работают постоянно(белки синтезируются всё время.

2)Белок репрессор плотно присоединяется к гену оператору и не снимается индуктором.Структурные гены постоянно не работают и не синтезируются белки, закодированные в данном транскриптоне.

3)Нарушение чередования репрессии и индукции: при отсутствии индуктора специфический белок синтезируется, а при наличии не синтезируется.

Вышеназванные нарушения работы транскриптонов связаны с мутациями гена-регулятора и гена-оператора.

Проблемма генетического груза существует в популяции неблагоприятных аллелей в составе гетерозиготных генотипов.

Некоторые вредоносные аллели в рецессивном состоянии могут сохраняться в гетерозиготных генотипах и при некоторых условиях доставлять приемущества.(Аллель серповидно-клеточной аонемии)

Генетический груз это следствие генетического полиморфизма. Это плата за экологическую и эволюционную гибкость.Наследственное разнообразие снижает приспособленность популяций людей. Бремя генетического груза оценивают по числу неблагоприятных аллелей в генотипе каждого человека. В среднем это 3-5 рецессивных аллелей приводящих в гомозиготе к смерти в раннем возрасте. 50% зигот ,образующихся в каждом покалении людей не состоятельны в биологическом плане, 10 % гибнет на ранней стадии, 20% спонтанные аборты, 10 % браков бесплодны,10% отклонение от номы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]