Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Дифуры.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
142.07 Кб
Скачать

Свойства систем линейных однородных уравнений

Для того чтобы система имела нетривиальные решения, необходимо и достаточно, чтобы ранг ее матрицы был меньше числа неизвестных.

Теорема. Система в случае m=n имеет нетривиальное решение тогда и только тогда, когда определитель этой системы равен нулю.

Теорема. Любая линейная комбинация решений системы также является решением этой системы.  Определение. Совокупность решений системы линейных однородных уравнений называется фундаментальной системой решений, если эта совокупность состоит из линейно независимых решений и любое решение системы является линейной комбинацией этих решений.

Теорема. Если ранг r матрицы системы меньше числа n неизвестных, то существует фундаментальная система решений, состоящая из (n-r) решений.

Алгоритм решения систем линейных однородных уравнений

  1. Находим ранг матрицы.

  2. Выделяем базисный минор. Выделяем зависимые (базисные) и свободные неизвестные.

  3. Вычеркиваем те уравнения системы, коэффициенты которых не вошли в состав базисного минора, так как они являются следствиями остальных (по теореме о базисном миноре).

  4. Члены уравнений, содержащие свободные неизвестные, перенесем в правую часть. В результате получим систему из r уравнений с r неизвестными, эквивалентную данной, определитель которой отличен от нуля.

  5. Решаем полученную систему методом исключения неизвестных. Находим соотношения, выражающие зависимые переменные через свободные.

  6. Если ранг матрицы не равен количеству переменных, то находим фундаментальное решение системы.

  7. В случае rang = n имеем тривиальное решение.