
- •Жидкостно-мозаичная концептуальная модель биомембраны Сингера-Николсона (1972 г.)
- •Изображение элементов биомембраны
- •С) Функциональная классификация мембранных белков.
- •Классификация мембранных белков
- •Топологическая классификация
- •Биохимическая классификация
- •Д) Значение гликокаликса
- •Гликокаликс
- •Б) Опыты л.Гальвани.
- •С) Регистрация и измерение потенциала покоя.
- •Д) Электрогенез потенциала покоя.
- •Изменения потенциала покоя
- •Б) Законы возбуждения «всё или ничего», «силы».
- •Закон силы раздражения в приложении к составной возбудимой структуре (нерву, мышце). С) Закон Гоорвега-Вейса-Лапика. Хронаксиметрия.
- •Кривая «сила – время» Гоорвега-Вейса-Лапика
- •Сравнение возбудимости двух возбудимых структур. Хронаксия, хронаксиметрия
- •Зависимость между силой тока и временем его действия. Хронаксия (по Гоорвегу, Вейсу и Лапику). Р — реобаза, Хр — хронаксиия.
- •Полярный закон э.Пфлюгера. Объяснение в тексте.
- •Анодно-размыкательное возбуждение. Куд – критический уровень деполяризации, пп – потенциал покоя, пд – потенциал действия, аэт – анэлектротон, аэ – анодическая экзальтация. Объяснение в тексте.
- •Частотный оптимум и пессимум ритмической стимуляции
- •Усвоения ритма стимуляции возбудимыми структурами
- •Парабиоз н.Е.Введенского
- •Механизм проведения возбуждения по безмиелиновым нервным волокнам
- •Механизм проведения возбуждения по миелиновым нервным волокнам
- •Формирование везикул
- •Заполнение везикул
- •Опустошение везикул и освобождение медиатора
- •Рециклизация везикул
- •Кальциевые каналы и экзоцитоз
- •Структура нервно-мышечного синапса
- •Рецепторы постсинаптической мембраны
- •Варианты изображения н-холинорецептора (nicotinic acetylcholine receptors)
- •Миниатюрный потенциал концевой пластинки
- •Фармакологическая модификации нмс
- •2. Общая вода, жидкости организма и жидкости внутренней среды
- •4. Система гуморального транспорта
- •6. Система крови (г.Ф.Ланг)
- •Транспортная функция крови
- •Защитная функция крови
- •Регуляторная функция крови
- •8. Состав крови
Б) Законы возбуждения «всё или ничего», «силы».
Процессы возбуждения могут протекать по двум законам – «все или ничего» и «силы».
Это эмпирические законы, устанавливающие соответствие между силой действующего стимула (раздражителя) и силой ответной реакции возбудимой структуры
Если с увеличением силы стимула увеличивается сила ответной реакции возбудимой структуры, говорят, что возбуждение происходит по закону «силы».
Если сила ответной реакции возбудимой структуры при прочих равных условиях даёт максимальную ответную реакцию («всё») при любой силе порогового или сверхпорогового раздражения и не даёт никакого ответа («ничего») при подпороговом раздражении, говорят, что возбуждение происходит по закону «все или ничего».
Как графически отображают законы возбуждения? Рассмотрите рис. .
Для одиночных образований (нерное волокно, мышечное волокно) выполняется закон «всё или ничего».
Если речь идет о целом образовании, например, нервном стволе, содержащем отдельные аксоны, или о скелетной мышце как совокупности отдельных мышечных волокон, то в этом случае каждое отдельное волокно тоже отвечает на раздражитель по типу "все или ничего", но если регистрируется суммарная активность объекта (например, внеклеточно отводимый ПД), то его амплитуда в определенном диапазоне находится в градуальной зависимости от силы раздражителя: чем больше сила раздражителя, тем больше ответ.
Пример: пусть имеется нервный ствол, состоящий из 10 аксонов.
Пороги раздражения для них таковы: 30 мВ - 1-й, 40 мВ - 2, 3, 4-й, 50 мВ - 5, 6, 7, 8-й и 60 мВ - 9 и 10-й аксоны. Следовательно, при 30 мВ - активируется 1 аксон, при 40 мВ - 4 (1-й-+-2, 3, 4-й), при 50 мВ - 8 (1-й+2, 3, 4-й + 5, 6, 7, 8-й), а при 60 мВ - все 10 волокон.
Рис. . Градуальная зависимость между силой раздражения нервного ствола и числом возбужденных нервных волокон. Объяснение в тексте.
Таким образом, в пределах от 30 до 60 мВ имеет место градуальная зависимость. При дальнейшем увеличении силы раздражителя амплитуда суммарного ответа постоянна.
Рассмотрим как трактуется закон силы для составных возбудимых структур (мышцы, нерва). Исследования зависимости ответной реакции от силы раздражения как целого организма, так и изолированного препарата показывают, что чем больше сила раздражения, тем сильнее ответная реакция. Если увеличивать силу раздражения выше порогового, то величина ответной реакции возрастает вплоть до определенного для каждой структуры предела. Как только ответная реакция достигает наибольшего значения, то дальнейшее увеличение силы раздражения становится неэффективным или может сопровождаться угнетением функции (торможением — пессимум силы, по Н.Е.Введенскому), необратимыми структурными изменениями и даже гибелью объекта, на который воздействуют сверхсильные раздражители. Таким образом, если говорить о законе силы в приложении к нерву, мышце, можно выделить два порога – минимальный и максимальный.
Закон силы раздражения в приложении к составной возбудимой структуре (нерву, мышце). С) Закон Гоорвега-Вейса-Лапика. Хронаксиметрия.
Синонимы: Закон Гоорвега‑Вейса‑Лапика, закон «силы‑времени».
Русский физиолог Н. Е. Введенский в 1892 обосновал значение времени как фактора, определяющего ход физиологической реакции. Было также экспериментально установлено (голландский физик Л.Горвег, 1892, французский физиолог Ж.Вейс, 1901), что значение стимула, вызывающего возбуждающий эффект в тканях, находится в обратной зависимости от длительности его действия и графически выражается гиперболой