Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
билеты с 1 по 20.docx
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
150.05 Кб
Скачать

12. Случайные величины

Одним из основных понятий теории вероятностей является понятие случайной величины.

Примеры случайных величин:

Пример 1 Число родившихся мальчиков (или девочек) среди ста новорожденных.

Пример 2 Расстояние, которое пролетит снаряд при выстреле из орудия.

Пример 3 Ошибка измерителя высоты.

Пример4 Число вызовов, поступивших от абонентов на телефонную станцию в течение определенного промежутка времени.

Пример5 Число космических частиц, попадающих на определенный участок земной поверхности в течение определенного промежутка времени.

Пример6 Температура воздуха на следующий день.

Пример7 Число появлений герба при четырех бросаниях монеты.

Пример8 Время безотказной работы некоторого прибора.

Приведенные примеры показывают, что со случайными величинами приходится иметь дело в различных областях науки и техники, поэтому понятие случайной величины имеет очень большую практическую значимость.

Определение1.1: Случайной величиной называют величину, которая в результате испытания примет одно и только одно возможное значение, наперед не известное и зависящее от случайных причин, которые заранее не могут быть учтены.

Более строгое определение случайной величины можно дать следующим образом:

Определение1.2:Случайной величиной называется функция X(ω), определенная на некотором множестве элементарных событий Ω.

Случайные величины обычно обозначают большими буквами X, Y, Z , а их возможные значения – соответствующими строчными буквами x, y, z.

Например, если случайная величина X принимает четыре возможных значения, то они будут обозначены как x1 , x2 , x3 , x4.

Случайные величины бывают дискретными и непрерывными.

Определение1.3: Случайная величина называется дискретной, если она принимает отдельные, изолированные возможные значения с определенными вероятностями.

Число возможных значений дискретной случайной величины может быть конечным или бесконечным (счетным).

Определение1.4:Случайная величина называется непрерывной, если она принимает все значения из некоторого конечного или бесконечного промежутка.

Число возможных значений непрерывной случайной величины бесконечно.

13.Дискретная случайная величина. Математическое ожидание и дисперсия.

14.Математическое ожидание случайной величины и его свойства.15.Дисперсия случайной величины и её свойства.

Дискретной (прерывной) называют случайную величину, которая принимает отдельные возможные значения с определенными вероятностями.

Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка.

Пример 1. Случайной величиной является число очков, выпавших при бросании игральной кости, или рост случайно выбранного из учебной группы студента. В первом случае мы имеем дело с дискретной случайной величиной (она принимает значения из дискретного числового множества M={1, 2, 3, 4, 5, 6}; во втором случае - с непрерывной случайной величиной (она принимает значения из непрерывного числового множества - из промежутка числовой прямой I=[100, 3000]).

Закон распределения

Законом распределения случайной величины называется соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями (его можно задать таблично, аналитически (в виде формулы) и графически.

При табличном задании закона распределения дискретной случайной величины первая строка таблицы содержит возможные значения, а вторая - их вероятности (Табл.1).

Х

х1

х2

...

хn

p

p1

p2

...

pn

Сумма вероятностей второй строки таблицы 1, равна единице:

p1 + p2 + ...+ pn = 1.

Числовые характеристики дискретной случайной величины

Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности.

M (X) = x1p1 + x2p2 + ...+ xnpn.

Если дискретная случайная величина принимает только значения x1, x2, ..., xn, вероятности которых соответственно равны p1, p2, ..., pn . Тогда математическим ожидание определяется равенством:

M (X) = x1p1 + x2p2 + ...+ xnpn.

Если дискретная случайная величина принимает счетное множество возможных значений, то

На практике часто приходится оценить рассеяние возможных значений случайной величины вокруг ее среднего значения.

Дисперсией (рассеянием) дискретной случайной величины называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:

D (X) = M [X - M (X)]2.

(3.3)

Пример 2. Найти дисперсию случайной величины X, которая задана следующим законом распределения: 

Х

1

2

5

P

0,3

0,5

0,2

Решение. По формуле (3.1) находим математическое ожидание:

M (X) = 1*0,3 + 2*0,5 + 5*0,2 = 2,3.

Используя формулу (3.3) записываем все возможные значения квадрата отклонения:

[X1 - M (X)]2 = (1 - 2,3)2 = 1,69;

[X2 - M (X)]2 = (2 - 2,3)2 = 0,09;

[X3 - M (X)]2 = (5 - 2,3)2 = 7,29.

Тогда закон распределения квадрата отклонения имеет следующий вид: 

[X - M (X)]2

1,69

0,09

7,29

P

0,3

0,5

0,2

По формуле (3.3) находим дисперсию:

D (X) = 1,69*0,3 + 0,09*0,5 + 7,29*0,2 = 2,01.

Для вычисления дисперсии часто бывает удобно пользоваться следующей теоремой.

ТеоремаДисперсия равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания:

D (X) = M (X2) - [M (X)]2

(3.4)

Пример 3. Найти дисперсию случайной величины X, которая задана следующим законом распределения: 

Х

2

3

5

P

0,1

0,6

0,3

Решение. По формуле (3.1) находим математическое ожидание:

M (X) = 2*0,1 + 3*0,6 + 5*0,3 = 3,5.

Закон распределения случайной величины X2

Х2

4

9

25

P

0,1

0,6

0,3

Математическое ожидание М(Х2):

M (X) = 4*0,1 + 9*0,6 + 25*0,3 = 13,3.

По формуле (3.4) находим дисперсию:

D (X) = 13,3 - (3,5)2 = 1,05.

Средним квадратическим отклонением случайной величины Х называется корень квадратный из ее дисперсии:

(3.5)