Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
биохимия ответы.doc
Скачиваний:
2
Добавлен:
01.05.2025
Размер:
9.05 Mб
Скачать

Роль желчных кислот

  1. Эмульгируют жиры

  2. Активируют панкреатическую липазу.

  3. Участвуют во всасывании продуктов распада липидов.

После всасывания продуктов гидролиза жиров в стенке кишечника происходит ресинтез жиров: ТАГ, ЭХС, ФЛ

2.8. Ресинтез жиров в стенке кишечника. Состав и строение транспортных форм липидо(липопротеинов ).

Липиды в крови нерастворимы, поэтому для транспорта липидов кровью в организме образуются комплексы липидов с белками – липопротеины. Они имеют сходное строение.

Апобелки – небольшие полипептиды, которые могут свободно переходить от одного ЛП к другому (А, В, С, Е). ЛП выполняют несколько функций:

  1. Формируют структуру липопротеинов.

  2. Взаимодействуют с R на поверхности клеток и т.о. определяют какими клетками будет захватываться данный тип ЛП.

  3. Служат ферментами или активаторами ферментов, действ. на ЛП.

В организме человека синтезируются следующие формы: ХМ, ЛПНП, ЛПОНП, ЛПВП .

5.8. β – окисление жирных кислот. Локализация, роль карнитина, последовательность реакций. Энергетический баланс окисления пальмитиновой кислоты.

β-окисление – специфический путь катаболизма жирных кислот, при котором происходит отщепление по 2 углеродных атома в виде ацетил-КоА. называется так потому, что реакции окисления происходят у β-углеродного атома.

I этап – подготовительный, протекает в цитоплазме. В результате чего происходит активирование высшей жирной кислоты (ацил-КоА). Затем ацил-КоА соединяется с карнитином, с образованием ацил-карнитина, который транспортируется в митохондрию, где жирная кислота подвергается четырем превращениям за один цикл:

1. Дегидрирование

2. Гидратация

3. Второе дегидрирование

4. Тиолиз

    1. Синтез и окисление глицерола. Энергетический баланс окисления глицерола.

3.8.Основные фосфолипиды (фосфатидилхолин, фосфатидилэтаноламин, фосфатидилсерин), химическое строение, биологическая роль. Жировое перерождение печени. Липотропные факторы.

Биологическая роль.

    1. Входят в состав в мембран, участвуя в их избирательной проницаемости.

    2. Дипальмитоилфосфатидилхолин (до 80%), является компонентом сурфактанта, выстилающего альвеолы легких и препятствующей слипанию стенок альвеол во время вдоха.

    3. Фосфатидилэтаноламин и фосфатидилхолин мембран взаимодействует с ферментами, образуя комплексы, которые активируют факторы свертывания крови. Фосфатидилсерин активирует процессы фибринолиза, связываясь с другими ферментами.

    4. Обладают липотропным действием, препятствуя отложению нейтрального жира в печени.

    5. Продукты их распада участвуют в патогенезе бронхиальной астмы, атеросклероза.

    6. Фосфатидилсерин влияет на освобождение гистамина.

Жировое перерождение (инфильтрация) печени.

Гепатоциты переполняются нейтральным жиром (ТАГ), разрушаются, образуются кисты, вокруг них разрастается соединительная ткань, развивается жировая дистрофия. Эта патология возникает вследствие нарушения синтеза фосфолипидов, связанный с недостатком липотропных фактров: метионина, полиеновых ненасыщенных жирных кислот, холина, В12, В15, фолиевой кислоты, липокаина (вырабатывается в ПЖЖ), поступающей только в составе пищи.

ФЛ входят в состав ЛПОНП, которые транспортируют эндогенные ТАГ из печени тканям. Следовательно, нарушение образования ЛПОНП приводит к нарушению их выведения и накопления в печени.

4.8. Схема распада фосфолипидов мембран. Образование эйкозаноидов из арахидоновой кислоты: простагландинов, лейкотриенов, тромбоксанов, простациклинов. Роль в норме и патологии (атеросклероз, бронхиальная астма, ревматоидный артрит ).

От фосфолипидов мембран под действием фосфолипазы А2, отщепляется арахидоновая кислота, которая используется для синтеза эйкозаноидов (напомнить о строении). Активация фосфолипаз происходит под действием различных факторов: гормонов, гистамина, цитокинов, в условиях гипоксии, иммунных воздействий и др.

В клетках имеется 2 основных пути превращения арахидоновой кислоты:

1 – циклооксигеназный, приводящий к синтезу простагландинов – предшественников тромбоксанов и простациклинов;

2 – липооксигеназный, заканчивающийся образованием лейкотриенов.

Простагландины

  1. Влияют на сокращение гладких мышц.

  2. Способствуют секреторной функции желудка.

  3. Участвуют в воспалительных реакциях.

  4. Модулируют действие гормонов.

  5. Влияют на гемодинамику почек.

  6. Автономно регулируют нервное возбуждение.

Простациклины – образуются в стенках кровеносных сосудов сердца, матки, слизистых желудка.

Расслабляют гладкую мускулатуру

Способствуют фибринолизу, и тем самым препятствует свертыванию крови.

Тромбоксаны являются антагонистами простациклинов, образуются в тромбоцитах, в мозге, способствуют свертыванию крови

  1. вызывая агрегацию тромбоцитов

  2. оказывают сосудосуживающее действие.

Накопление служит причиной тромбоза, атеросклероза

Лейкотриены в лейкоцитах, макрофагах.

  1. Вызывают сокращение гладких мышц дыхательных путей

  2. Стимулируют секрецию гликопротеинов, увеличивают количество слизи в дыхательных путях

  3. Участвуют в аллергических и иммунологических реакциях.

  4. Повышают проницаемость сосудов..

  1. Затрудненное дыхание при бронхиальной астме связано с действием лейкотриенов. Ревматоидные артриты также обусловлены действием лейкотриенов.

10.8. Холестерол, строение, биологическая роль. Поступление и выведение из организма. Последовательность реакций синтеза холестерола до мевалоновой кислоты. Пути превращения холестерола в организме: окисление, эстерификация, дегидрирование. Возрастные особенности содержания холестерина у детей.

Холестерол – стероид, характерный только для животных организмов. 50% синтезируется в печени, 15-20% в тонком кишечнике, остальной – в коже, коре надпочечников, половых железах. В сутки синтезируется 1г холестерола. С пищей поступает 300-500мг.

N в крови = 3,9-5,2 ммоль/л

У новорожденных ХС – 1,3-2,6 ммоль/л

В 12-14 лет – достигает нормы.

Биологическая роль.

      1. Входит в состав клеточных мембран, влияя на их свойства.

      2. Субстрат для синтеза желчных кислот, стероидных гормонов, витамин Д3.

      3. Поддерживает тургор кожи.

Реакция синтеза ХС происходит в цитолизе клеток, это один из самых длинных метаболических путей в организме человека, включает около 100 последовательных реакций.

        1. Основной путь превращения ХС – это его окисление. 80% от всего количества окисляется в печени в желчные кислоты, 3% в стероидные гормоны. При реакциях окисления в молекуле ХС появляются полярные группы, гидроксилы, карбоксилы, повышается его растворимость в воде, что способствует выведению из организма.

        2. Второй путь превращения ХС в организме – это образование эфиров ХС (эстерификация). Эфиры ХС составляют около 10% от общего количества ХС в организме. При этом растворимость уменьшается и это приводит к накоплению в организме. У новорожденных относительно низкий коэффициент эстерификации по сравнению с более старшим возрастом детей = 0,58-1 ммоль/л, что связано с дефицитом полиненасыщенных жирных кислот.

        3. Дегидрирование. В положении 7, 8 образуются двойные связи, что приводит к образованию 7-дегидрохолестерола (предшественника витамина Д3)

Выведение холестерола.

Чтобы поддерживать постоянный уровень его в организме необходимо выводить 1,5г в сутки. 1г в сутки окисляется в желчные кислоты, 200-300мг в сутки с калом в виде копростанола, 100мг со слущенным эпителием, 40 мг идет на синтез стероидных гормонов, с мочой 1-2мг в сутки.